Top
ヘッダー

(2018年1月15更新) [ 日本語 | English ]

自然科学概論 (Introduction to natural sciences)






有珠山 / サロベツ泥炭採掘跡
1986年, 2006年の有珠山火口原. ワタスゲ・エゾカンゾウ

科学 science

自然科学 natural science: 自然現象natural phenomenaを扱う

scientia (L.) = 知識 → 整理体系化された知識
| 純粋科学pure science (≈ 理論科学theoretical science)
| 応用科学 applied science

科学概論 philosophy of science, or grammar of science

≈ 自然科学概論
philosophia (G.) = philos 友愛 + phia 智: 当時は学問全体を指す言葉 (現在、哲学)
→ 自然科学全般の体系化。目的・研究法の明確化。知識・法則の成立範囲の特定等
→ 人生観・価値観までを含めた哲学的思考の根拠

[ 論理学 | 倫理学 | 哲学 ]

索引
科学の発展形態(Chamberlin 1965)
  1. 支配的理論 ruling theory
  2. 単一作業仮説 working hypothesis Ex. 帰無モデル分析 null model analysis
  3. 多次元作業仮説 multiple working hypothesis

自然科学史 (History of natural sciences)


太古(原始社会) primitive society

科学 = 生きるための野外生物学 (field biology to survive)
生物は生活する環境に適応した形や働きをもつ ↔ 生物は良く似た別の生物を持ち連絡する

黒曜石(十勝石)、原宿(群馬県)、白滝(北海道): 原石山(岩体として産出) → 矢尻等利用

→ 黒曜石鉱床の品質と埋蔵量について必要な知識を持つ [世界中 Ex. 欧州 - フリント]

化石: 貝・デスモスチルス - 装飾品、海棲: 海 → 陸化、火山 → マグマ

BC 6000
メソポタミア(バビロニア)
天文学 = 占星術
10進法と60進法を併用: 1年 = 360日 → 円周
数列
エジプト
天文学: ナイル川氾濫予測(暦必要) → 1年 = 365.25日
幾何学 geometry (geo = 土地, metry = 測量): ピラミッド建設・ナイル川流域測量

Ames (≈ BC2000), エジプト: アーメスのパピルス(= リンド・パピルスRhind papyrus)

単位分数: 分子が1の分数 → 2/5 = 1/3 + 1/15, ···, 2/101 = 1/101 + 1/202 + 1/303 + 1/606

円面積, S = (d - 1/9)²

古代 (remote ages, BC7c - AD4-5c)


≈ ギリシア哲学

ギリシア自然科学

= 古代オリエント科学
ギリシア時代 Ancient Greek era: 哲学的科学観 - 素朴な形での進化
演繹的公理 Ex. 大地不動で宇宙の中心
Xenophanes, Xanthus, Herodotus

陸上での貝の化石 → 昔は、その地が海であったと判断

a) イオニア(ミレトス)学派 Ionian School
ミレトスに起るギリシア哲学初期の重要学派 = 唯物論的思想
哲学者であると同時に商人や技術者であること多
三大問題
  • 円の正方形化: 円と等しい面積を持つ正方形を作図する
  • 角の三等分
  • 立方体の倍積: 与えられた立方体の一辺から2倍の体積を持つ立方体の一辺を作図する
黄金分割 (the golden section), φ = AB:AC = AC:CB

|__________________________|________________|
A_________________________C_______________B

AB = 1, AC = xCB = 1 - x
φ = 1/x = x/(1 - x) → x2 + x - 1 = 0 →

x = (-1 + √5)/2 ≈ 0.61803, φ = 1/x = (1 + √5)/2

≈ 1.61803 [無理数]

[長さ:幅 = φ]は最も心地よい釣り合いを持つ(経験則)

黄金長方形: 1/φ = φ - 1

section

□ABCD, AB = AD = 1, AE = EB, EC = EF → AF:AD = φ = (1 + √5)/2
→ オウムガイの殻など自然界に多
b) アテナイ
431BC-404BC: ペロポネソス戦争 (the Peloponnesian war) → 政治力失う
Eudoxos (BC409-355): 比例。区分求積法
同心天球説: 惑星運行の数学的説明。太陽、月、5惑星の個々に恒星用の天球内を回転する別の天球を用意し、惑星が黄道上を動きつつ「8の字型(= ヒッポペテ曲線)」運動をさせる、完全モデルを目指す
Menaichmos (BC350?-): 円錐曲線
Aristoteles (Aristotle, Aristote, アリストテレス) BC384-322
哲学: 論理学を大系づける「形而上学」
プラトンがイデアで考えたもの = 個物に内在する本質 → 本質はそれらが表す対象の外側に存在しない
個物 = 形相(限定するもの) + 質料(限定されるもの)
プラトン・アリストテレス著作 → ギリシア哲学支配した観念論と唯物論は最高潮 → 後の哲学に影響
人心不安定さ反映し、ギリシア哲学は世界の本性より個々人問題へ関心移す
広領域の知識・経験体系化(自然学・天文学・物理学・動物学等) – それまでの科学からの進展
アリストテレスの学問分類: 自然学(理論的) = 第一哲学, 数学, 自然学 + 実践的 + 制作的

第一哲学: 神-不変不動の純粋形相

目的論的: 事物にとっての善(遺伝子レベルでの個体)
経験・物質: 重い物質は軽い物質より速く落下する(Galilei否定)。物体は力を加えると速度を生じる
生物学の開祖
宇宙モデル: 神聖な球。地球の大きさはそれを取り囲む全世界に比べればはるかに小さい
c) アレクサンドリア期
マケドニア: アレキサンダー大王(王子時代にアリストテレスに教受)建設都市
c1) 前期
Aristarchos (BC 310?-230?)
Euclid, or Eukleides (BC300-?)
プトレマイオス王招聘でアレキサンドリアへ来た学者? 「幾何学に王道なし」
Gr.; mathematics = Euclid幾何学 Euclid geometry (幾何学読本) → ユークリッド幾何学体系化
「エレメンツelements」全13巻 → 既存の数学に対し深い再反省 → 1理論体系とし再組織(5つの公理)
Archimedes (BC287-212): アルキメデスの原理(浮力の原理)
天文学・数学・物理学(力学の開祖) Ex. 円周率。アルキメデスの螺旋
「円を踏むな」 → 兵士に槍で刺された
Apollonios Pergaeus (BC260-200?): 「円錐曲線論」全8巻
Aristarchos (BC280?)
皆既蝕間に地球が月に落とす影を観測 → 地球と月の間の距離が地球の直径の約40倍と測定
恒星の観察できる視差の欠如 → 宇宙は無限 → 当時の人には受け入れられない概念
Eratosteres (BC275-194, BC237-197 or 236-194)
地球の円周距離算出 – 定量的学術
BC240?: 夏至正午の太陽高度 → 地球の大きさ推定(24900 miles) → 世界地図作成?

当時の常識より遥かに大きな値 – 一般には認められなかった

C2) 後期
BC146: ローマがギリシアを支配
Hipparchos BC150?: 三角法(測量) → 三角関数。立体射影。球面天文学
Heron BC100?: 機械学、測量学 → ヘロンの公式
Menelaus BC100?: 「球面学」3巻。球面天文学の基礎を作る
2c頃 アレキサンドリア

卑金属 → 貴金属 → 錬金術 alchemy – 化学・医学と結びつく
alchemyの語源はchemistryと同じ (al-: アラビア語接頭辞 Ex. alchohol, algebra)

Galenos 129-199, or 131-201: 医学
Lucretius Carus, Titus (ローマ) BC94-AD55?
Ptolemaios Claudios, or Ptolemy 85-165: アレクサンドリアで活躍
天文学・占星術・地理学・光学
「アルマゲスト」(原題「数学的集成」) 13巻: バビロニア、エジプト、ギリシャ天文学集大成
「地理学入門」1巻
「プラニスファイリウム」 立体投影法 – 円錐図法
球面幾何学、太陽・月・惑星の運動理論

BC8 c月食記録等(観測記録資料価値大)

天動説 Ptolemaic theory = 天体観測

↔ 地球中心説 geocentricism = 地球球体(大地不動で宇宙の中心)

Diophantos 300?: 整数論 Arithmetica
= 近世整数論の基礎 → 負数はまだない

インド数学

アラビアを経てヨーロッパへ = ヨーロッパ中世数学形成に影響
0(ゼロ)の発見 → 10進法

Q. 10進法では3桁の数は100x + 10y + zの形に書ける。x + y + zが3で割り切れれば、この数を3で割り切れることを示せ

2次方程式 → 負数概念必要(インド)
Aryabhata 476-?: 現在の2次方程式と同じ解法で解く
「アールヤバティーヤ」 数学教科書
Brahmaagupta 598-?
「ブラーフマスプタ・シッダーンタ」 数学教科書 (Aryabhata批判)
ブラマグプタの定理: 円に内接する四角形ABCDの対角線ACとBCが点Pで直行すれば、PからABへ下ろした垂線PHを逆に延長したものは、辺CDの中点Mを通る
6-7 c: インド記数法体系 = 10進法完成
Bhaskara 1114-?: 2次方程式には2つの解があることを示す
「リーラーバティ」「ビージャガニタ」 - 数学書
「シッダーンタシロマーニ」 - 天文学書
Bibhutibhusan Datta 1888-: 「インド数学史」

中世 (middle ages, 4-5th c -13-15th c)


アラビア科学(イスラム圏科学)

古代オリエント科学から発展
7c中(ウマイア王朝)-8c中(アッバス王朝): 発展始まる

アリストテレスのギリシア語諸著作をアラビア語へ翻訳し注釈行う

8-9c: アラビア・ルネサンス
9c: 天文学: ダマスカス、バグダッドに天体観測所

プトレマイオス、ガレノス、エウクレイデスらを含むギリシア語著作をアラビア語に翻訳
錬金術: 不老不死薬開発が目的に加わる → 元素観念(不変物質)と関連

Al-Khowarizmi 825?

ヨーロッパ

暗黒時代 the Dark Ages: 10c終頃までの西欧
キリスト教神学とそれの支柱となる哲学が影響
1085 キリスト教徒トレド奪回

→ アラビア語翻訳ギリシア哲学がキリスト教圏に入る
→ 西欧ギリシア哲学
中世後期西欧技術 = アラビア科学、中国科学の流入
錬金術 → 魔術

フィボナッチ (通称), Leonardo da Pisa 1170-1250

"Liber Abaci 算盤の書": インド・アラビア数学・記数法・計算法紹介

Bacon, Roger 1214-1294: 実験科学 – 近代科学の萌芽

「自然認識にはまず数学と経験を主とすべき」 → 教会に受け入れられず異端者の扱い

Oresme Nicole 1323-1382: ベキの概念と記号提案
Stifel Michael 1486-1567: "Arithmetica integra" → 対数概念
Gunter Edmund 1581-1626: 3角関数対数表。ガンター尺(計算尺前身)発明
Abel Niels Henrik 1802-1829

発散級数は和を持たない
5次以上の方程式には4次以下の方程式で示されるような根の公式存在しない

Bernoulli Jacques 1654-1705 (17-18世紀数学者輩出ベルヌーイ家の1人)

1/12 + 1/22 + 1/32 + … → 収束

Bernoulli, Jean 1667-1748: Danielの父
Bernoulli, Daniel 1700-1812, スイス(蘭生, ベルヌーイ一家): 数学・物理学
Euler Leonhard 1707-1783

1736: 1/12 + 1/22 + 1/32 + … = 6/π
1748: 「無限解析学入門」
1757: プラトンの立体: 任意の多面体

Def F: 面数, E: 稜本数, V: 頂点数 → Formula: V – E + F = 2

Cauchy Augustine Louis 1789-1856: 級数

1831: 複素数

表. ヨーロッパ中世後期の諸技術を中国と対照 → 宗教観の差. * 751: サマルカンド、793: バグダッド、900: エジプト、1100: モロッコ、1150頃: スペイン、1189までに: フランス
                  中国                  ヨーロッパ

  羅針盤 compass  11c-12c初期           12c後期
  黒色火薬        9c前期                13c
  火砲            竹筒ロケット古くから  13c末(1325に記録)
  鋳鉄            BC4                   13c
  紙*             1c末                  12c
  印刷術
    版木          6c                    1289
    土製活字      1045頃                ↓
    木製活字      1314頃                ↓
    金属活字      1392 (朝鮮)           1450 Gutenbrerg J
                                             (1400-1466?)
  機械時計        11c 水時計            1450 脱進器
                                        15c末 ゼンマイ時計

近代 (Modern age)


産業革命 industrial revolution → 哲学革命

近代科学成立期

= 科学革命「天体の幾何学から天体の力学へ(天文学)」
Regiomontanus 1436-1476, 独, 天文学 + 三角法

→ 当時の惑星表(航海に必要)の誤り指摘 – 地動説の伏線

Vinci (da), Leonard 1452-1519, 伊

多分野(美術・建築・技術科学)で活躍
「人体解剖図」

Copernicus, Nicolaus 1473-1543, Poland

1500頃 アリタルコス()地動説知る → 太陽中心説より天体運動説明容易

太陽中心、地球と共に数個の惑星。地球・月は自転(地動説) → ケプラー
反対論を警戒し、仮説として出版「天球の回転について」(1543, 死後) → 宗教家・天文学者批判で禁書

Porta, G della 1543-1615, 伊

容器に水蒸気を詰め、それを冷やし凝集させて真空を作る装置(1606)

Digges, Thomas 1546-1595, 英: 天文学

コペルニクス体系を取り入れ無限の宇宙を擁護

Stevin, Simon 1548-1620, 蘭: 数学・土木技師

小数発見。風力帆走2本マスト自動車Simon of Bruges発明

Kepler 1571-1630, 独

ケプラーの法則 (Tycho Brahe 1546-1601, デ: ケプラーの師。膨大な天文観測データ)

Galileo Galiei 1564-1642, Galilei姓 (当時伊習慣で名, 数・天文・物理・哲学)

近代物理学開幕 = 観察による科学研究法の基盤

振子の振動観察(逸話) → 周期一定 = 振子の法則 → 振子時計設計(不完全)
1604 落下の法則(落体の法則) s = 1/2·gt2
1610 自作望遠鏡 「星界の報告」

銀河系は星の集団/木星4衛星発見 → Copernicus太陽中心説(地動説)支持 → 『天文対話』(1632) - 異端審問受け発行停止

真空ポンプ研究

Guericke, Otto von 1602-1686, 独: 真空ポンプ発明
Torricelli E 1608-1647 伊, Galileiの弟子

水銀を詰めたガラス管を倒立 → 真空の存在(原子論)

van Helmont, Jan Batista 1577-1644, ベルギー: 実験科学(錬金術)

→ 物質 = 質料 + 精気

→ 精気単離を試みる → 空気とガスを区別
医科学思想発展のきっかけ – 実験的研究

Newton, Isaak, Sir 1643-1727, 英

リンカーン州ウールスソープ生まれ。ケンブリッジ大学卒業の後に教授
万有引力の法則 → 機械論的・力学的(物理的)
1687 「自然哲学の数学的原理」(略, プリンキピア) (自然哲学 natural philosophy = 物理学): 力学的自然観

a) 実験と帰納 + 演繹
b) 公理・原理
c) 基本概念 = 時間・空間・質量 → 操作(的)概念

ただし、世界の最初の起動者として神の存在を認めた

Laplace PS 1749-1827, 仏: 星雲説改めて提唱(カント-ラプラスの星雲説)

ラプラスの魔 「ある超能力者が特定の瞬間におけるあらゆる状態(全ての粒子の速度と位置)を知れば、そのものは将来のあらゆる出来事を予見できる」 → 瞬間の状態は時間の関数で表現できる

自然史的地球観誕生

986 ノルマント: グリーンランド発見
1492-1498 Columbus,Christopher (1451-1506)

アメリカ大陸(西インド諸島)発見

Agricola G 1490-1555, 独: 鉱物学の先駆的研究
Leonardo da Vinch: 「地質と化石」1504-05

化石とは地層の中に存在(古)生物遺骸 → 流水による侵食と堆積

Steno 1638-87: 地層学(層位学、層序学)

累重の法則(1669): 地層 – 水平, 空間 – 時間
地球生成説: 水が全ての元 – 水成論

堆積岩生成では正しいが、多事例で間違い (Ex. 花崗岩・変成岩が海中でできるとした過ち)

de Buffon, GL Leclere 1707-1788

地球は最初は溶融状態で現在の温度になるまでに7万8400年かかった(1749)

根拠: 鉄が冷えるに要する時間を鉄の体積を変え計る ↔ 聖書: 天地創造以来の年数は約6000年

数回の大洪水(1749) → ソルボンヌ大より呼び出し ↔ 聖書: ノアの洪水は1回 → 自説を変える

Kant I 1724-1804, 独: 天界の一般自然史および理論(1755)

地球誕生 → 発展 → 現在 → 消滅 = 星雲説(現在否定)

Hutton J 1726-1797, 英: 「地球の理論」(1795)

現在の地表の諸現象を調べれば過去の変化が推定できる

Werner A 1749-1817, 独: 岩石成因 – 水成論 → 火山作用は二次的なもの
↔ Humboldt Av 1769-1859, 独: 火成論
Lyell 1797-1875: 「地質学原理」(1830-1831)
Herschel FW 1738-1822, 独(活動は英): 反射望遠鏡製作 → 天王星発見
Smith, William W 1765-1839, 測量技師

運河掘削・石英採掘 → 化石による地層同定(対比) (1916-19)

標準化石の方法 Ex. 白亜・ジュラ紀 – アンモナイト
地球時代区分: 化石 → 累重 → 地層
堆積岩: 水の働きにより形成 → 不整合: 地層累重の法則に合わない地層の並び方

周期表 (periodic table)

= 周期律表
元素 element: 同数の陽子を持つ原子のグループ
1858 Cannizzaro 1826-1910, 伊: 原子仮説と分子仮説の統合の萌芽
1869 Meyer, Julius Lothar 1830-1895, 独
____ Mendeleev, Dimitrii Ivanovich 1834-1907, 露

独立に発表
当時63種元素既知 → 未知元素の席を空欄とし発見を予測。その性質も予測

. 長周期型元素周期表
table

国立天文台(編). 2010. 理科年表 2010版

元素に周期律という規則性: 元素の原子が規則性のある構造を持つ → 元素は構造要素に分割可能

人工元素 synthetic elements: 原子番号93-109のもの ↔ 天然元素

同素体 allotrope: 同元素からなるが互いに性質や構造が異なる単体。同素体を持つ元素 S, C, O, P (scop)

Ex. O2 vs O3, ダイヤモンド vs グラファイト vs フラーレン

原子 (atom)


1919 Rutherford

N原子核にα粒子衝突実験 → 714N + 24He → 11H + 817O
= 原子核は人工的変換可能を証明

Def. 11H = 陽子 proton

⇒ 衝突実験の多くから11H得られ最も軽い原子核と推定
Def. 質量数: 原子核の質量を水素原子核(11H)の整数倍で表したもの Ex. 水素 = 1

1932 Chadwick (英): 49Beにα粒子衝突実験 → 24He + 49Be → 01n + 612C
Def. 01n = 中性子 neutron

01n: 陽子とほぼ同じ質量をもつ中性の粒子

Def. 核力(核結合力) nuclear (binding) force: 核構成する陽子や中性子の結合力 (電気力ではない)
原子核 (atomic) nucleus(+e) [= 核子 nucleon]
= 陽子(+e) [1.6726·10-27 kg] + 中性子(0) [1.6749·10-27 kg]
原子番号 atomic number, Z: 原子核の陽子の数
(原子)質量数 (atomic) mass number: 原子核の陽子数と中性子数の和の数
Def. ZAX ⇔ 原子番号Zの元素Xの質量数A
電子 electron (–e): 陽子・中性子の質量の約1/1800 [9.109·10-31 kg]
電子雲: 電子の確率分布 → 直径0.5-2Å = 原子の大きさ
⇒ 電子雲モデル electron cloud model
同位体 (同位元素, isotope): 陽子数同じで中性子数異なる原子群
Ex. 天然水素同位体

1H. 2H = D (重水素 deuterium). 3H = T (3重水素 tritium)
重陽子 deuteron, D: 2Hの原子核 = 陽子と中性子の2個の核子で構成

放射性同位体 (radioisotope): 放射能を持つ Ex. 14C

= 放射性同位核、放射性同位元素

安定同位体 (stable isotope): 放射能を持たない Ex. 12C, 13C (応用)

原子モデル

1) トムソンモデル: 原子中の電気性物質は散在(一様分布)

⇒ 原子に帯電なく反撥性小 - 長岡モデルで否定

2) 長岡モデル (長岡半太郎 1865-1950)

原子は中心に+(プラス)電気が集まり、周りを-(マイナス)電気が取り巻

Bequerel, Antoine H. 1852-1908, Frederic Joliot-Curie 1900-1958, 1903 長岡半太郎

1910 Rutherford, Ernest 1871-1937, 英/Bohr NHD 1885-1962, デンマーク

実験で長岡モデルを支持
正電荷であるα粒子を原子(石墨)に照射時の反撥大

α粒子は、その質量の約1/7000の負電荷(= 電子)に衝突しても反撥しない
→ 正電荷が一様分布ならば反撥は大きくはない
⇒ 石墨中の正電荷(= 原子)は一様分布ではない[原子の核存在] = 電子の分布も一様ではない

ラザフォードの原子模型 Rutherford atom model

原子核大きさ ≈ 10–15 m
電子軌道 electron orbid ≈ 10–10 m

α粒子の最初の運動エネルギーから大きさを計算した

原子論 vs ニュートン力学/熱現象

粒子運動
= 質点運動の法則: 粒子の従う運動法則 (ニュートン力学の範囲)
= ニュートンの三大法則
1st law. 慣性の法則
2nd law. ニュートン方程式
Ex. ≈ 光速 → mは変化し運動量は時間的に変化

p = mv ⇒ 特定座標系(Ex. 慣性系)でのみ成立 →
2nd law成立条件: 全慣性系で時間の進み方同じ(1st lawのみなら不要)
時間の進み方は、物体の進み方と速度の関係の認識から生まれる

Ex. 軸毎に時間の進み方異なり、時間と共に質量変化

地球に固定した座標系と火星に固定した座標系では軸が異なり、両方を包括するためには座標系を太 陽に固定、更には銀河へと行く → 固定した座標系はあるのか

3rd law: どの座標系で加速度を計るか

α = m·d2x/dt2 = fxm·dv/dt = f (dt: 定時間の存在)

if 第3法則が成立しないと2物の力の差は異なり物体は常に加速度を有する

⇒ 第1法則も否定 ← 矛盾(背理法により第3法則成立を証明)
1, 2, 3の法則は、独立かつ密接な関係 Ex. 1が決まらなければ2が決まらない
「時間」とは… ありふれた問題に対し考察せぬは論理性の放棄である!
時間計測法: 計量器 → 規則正しい運動体の存在が前提

→ その運動体が規則正しいというのはどのようにして知る事が出来るのか。という、堂々巡りが始まる

ある時計の振動と天体の運動(地球の公転の時間を基準に時間は決められた)とは、法則的に一致

→ この段階での"時間"とは絶対時間認識の元で形成 ⇒ 時間とは、物体運動の認識として表わされる
→ 相対性理論上は時間の存在が研究対象

運動方程式の帰結
1. 初期条件 (f: 位置座標、ベクトル): dP/dt = f, m·dv/dt = f, f = fx + fy + fz

運動法則 ⇒ 運動量変化(加速度)の仕方を決める ⇒ 初期形態が運動法則を決定しうる物ではない
運動量の時間的変化は説明可能だが、一番最初の点体の働くきっかけはニュートン力学で説明出来ない
→ ニュートン「神の一撃」とし説明(神の存在) ⇐ 力学的自然観(決定論的)

2. 逆行運動可能 atom

時間反転 (t → -t) 運動方程式普遍
ニュートン力学の運動系
t, -tの量運動は逆運動(時間を逆行)でも成立
tで2回微分するので-tでも運動は不変
⇒ "運動方程式に合致" ≡ 時間に関して、運動法則は可逆
現実には、可逆性の見られない運動多 Ex. 熱力学諸現象は不可逆 → 原子論の第二関門
(結論: 総ての現象は原子論で扱える)

3. 正準共役力学変数

md2x/dt2 = f … (1) → dm/dt·(dx/dt) = f
dpx/dt = fx, px = mvx … (2)
質点毎に異なる
(1)(2)は、等しい式だが意味合い異なり、位置と運動量が物体質量によらない不変的形として(2)の方が良い
x, p 座標と運動量。不変な(一般的な)運動法則形式
物体の属性(質量)に左右されない形 = 法則
位置と時間は異なる
時間は半無限 [現在 → 未来) ⇔ 位置は無限 (- 無限 → + 無限)
(整数 = ある数より小さな有理数の集合)

(Boltzmann, Ludwig 1844-1906 自殺)

H-定理
熱力学第2法則を運動力学から説明
n(r, v, t), H(t) = dvdrnlogn, dH/dt < 0, S = -rH

⇒ 力学現象の可逆性と熱現象の不可逆性を示す

熱力学の原子論的基礎

縦↑↓, 横↔との分子の割合: 垂直か水平に運動 –
空間に固定されていると仮定(質量大)
atom
nA (G分子)
n____n____(nn←) (B分子)
(Udn→+Udn←) × nAV - このためにはB分子が等分布する必要

= UdA(n→ + n←)VnA____(n→ + n←) = N ⇔ トータル
= UdnANVnAΔ = p

atom
atom
(Udn + Udn)/nAV

= Ud(n + n)VnA
= UdnAN = pN

n + n = N
↔ – ↕ = pN, ↕ – ↔ = pN

縦横分子数の時間的変化

縦方向分子数の時間的変化 dN/dt

Increase = pN, Decrease = pNp(N – N)

横方向分子数の時間的変化 dN↔/dt ⇒

Increase = pN, Decrease = pNp(N – N)

↓ 分子の分布状態が等しいものと仮定 → 衝突
縦横分子指数の時間的変化
d(N – N)/dt = p(N – N) – p(N – N) = –2p(N – N)
N – N = Cept

atom 過去から現在を見る: 縦方向の増加は横方向から来た分と縦方向から消えた分の差

pNpN = p(N – N): 衝突 → 分子は等しく分布
dN/dt = p(N – N)
dN/dt = p(N – N)
d/dt(N – N) = 2p(N – N) = Ce2pt

dN/dt, dN/dt, Ce2pt → 変化量

古典論の限界

天体: 星は見えないはず
水素原子 hydrogen atomの安定性 → 不確定性原理 (運動状態の捉え方が違う)
夜空の星: 総ての星 → 質量の4乗に比例するエネルギー(= 太陽のエネルギーと仮定)
Ex. 乙女座南方の恒星 αケンタウルス(αK): 太陽に最も近く距離4.3光年 → 太陽とおよそ同じ発光量の0等星

同星から2 × 10-8 (W/m2)のエネルギーが地球に届く

実際: 地球公転軌道を用い三角測量で星への距離求め、星から届く光量から星発光量が分かる

atom
視神経細胞分子断面積 ≈ 10-10 (m2) → 分子1個は平均で同星より2 × 10-18 (J/s)光エネルギー受容
同細胞分子1個は約1 eV = 1.6 × 10-19 (J)の光エネルギーが届くと反応
光エネルギーが波として空間に一様に分布し届けば1.6 × 10-19 (J)/2 × 10-18 (J/s) ≈ 1/10[s]でαKが見える

Ex. 6等星は0等星より約300倍暗い

→ 等星を見るには1/10 × 300 = 30 (s)間見つめないと見えない
脳は目が送った画像を3/100 (s)毎に更新する必要(写真でいえば目は3/100秒より遅いシャッター切れない) → 光エネルギーが波伝播すると6等星は絶対に見えない
⇒ 光の波動説では、すぐに星は見えないはず

実際に星が見える条件: どれかのレチナール分子に光が当たれば良い
1個の持つ光粒子エネルギーはレチナール分子の状態を変える程の大きさを有している
田中 (1973): 光が物質と作用し、そのエネルギーが物質に吸収される時は、光エネルギーは波ではなく光子という粒子として吸収される
可視光の光子エネルギー:

hv(yellow) = 3 × 10-19 J, hv(violet) = 5.2 × 10-19 J等

≫ 1 eV = 1.6 × 10-19 J

100個ほどの光子が届けば視神経細胞分子は光感知 → 星はすぐ見える
⇒ 光の粒子説は暗い星もすぐに見えることを説明できる
atom

光の波動説・粒子説の比較
光が波の時の条件: 全部のレチナール分子の状態が変わる
光が粒子の時の条件: 30個のレチナール分子の状態変化すればよい

(3 × 1010)/d2 (cal/cm2·min) × 1/4 × 1/60 × 1/30 × 6 × 10-20 (cal)
150 > d ⇒ 150M2 > d ⇒ 1000光年先まで見える

ボーア原子模型 Bohr atom model

Bohr Niels HD 1855-1962, デンマーク: H等、簡単な原子で成立

対応原理 coresspondence principle: 古典力学-量子物理学間法則統一を模索 → 量子模型 quantum model

1) 電子 = 核との間のクーロン力の作用で核の周りを等速円運動する

ボーアの量子条件: 2π(mva) = nh

n = 1, 2, 3, …: 量子数
m: 電子質量
a: 軌道半径
v: 電子円運動速さ

2) 電子 = 定常状態 stationary stateから他定常状態に遷移 transitionする時だけ光の吸収か放出を行う

ボーアの振動条件: v = (EmEn)/h

Em: 遷移前のエネルギー
En: 遷移後のエネルギー

Def. 基底状態 boundary state: エネルギーの一番低い状態 [安定] → それ以外は励起状態

エネルギー状態(エネルギー準位energy level) = 基底状態と同じ角運動量を持つ
atom
質量____________↔ 運動量_____________⇒ 両者に密接な関係
動く範囲は広い______狭い (限られている)
動く範囲は狭い______広い
ドナー donor: 電子を提供する不純物原子

等価原理 equivalent principle (principle of equivalence): 対をなす2つの状態は同時に確定できない

→ 確率的に決定 ⇒ 不確定性原理 uncertainty principle (Heisenberg uncertainty principle)

Ex. オーロラ aurora

電子がエネルギー受け取る → 原子核から遠い軌道を回転 → 励起状態 [不安定] → 元の軌道に戻る = エネルギー放出 ⇒ エネルギーが光として放出される → オーロラ
Ex. エネルギー = 宇宙空間から来るプラズマが電子に衝突

プラズマplasma: 原子の原子核と電子が分かれて激しく動き回っている、一種のガス状態
atom
オーロラ色: 元素の発光輝線で決まる
atom
図. 原子のエネルギー準位energy levelと光の放射・吸収

Ex. O = 557.7 nm + 630.0 nm

応用: 流星: 発光色により成分推定


原子物理学概論試験
exam 1. 2種類の分子(A, a)から成る分子系が相互作用をしている。Aは密度ρAで分布し境界面は水平方向に45°であり質量は大きく固定した位置にある。回転もない。aは密度ρaで分布しており水平方向と垂直方向にのみ運動している。時刻tにおける垂直方向の分子の総数をN1(t)、水平方向の総数をN-(t)、この差をD(t) = N1(t) – N - (t)とする。次の2つの考え方にもとづきD(t)を求めよ。分子aの速さをv、分子Aの垂直断面の対角線の長さを2dとする

i) 垂直、水平方向の分子のうち4dvρaが1個の分子Aにより単位時間に水平垂直方向に運動方向を変える
ii) 垂直、水平方向のうち4dvρa個は単位時間に垂直、水平方向に運動が変わったものである
iii) 上記2つの結果が異なるとすればその異なる理由を述べよ

2. 量子力学的法則と古典力学的法則の共通している点と異なる点を列記せよ

量子力学 (quantum mechanics)


⇒ 微視的世界の法則: 量子説(論) quantum theory
Def. 量子 quantum: 物理量がそれ以上に分割されない最小単位から成り立つもの
熱放射 heat radiation (熱輻射 thermal radiation): 金属等を熱すると暗赤色・橙黄・白の光を放射

→ 熱放射は可視光線visible lightを含む幅広い波長分布を持った電磁波

Def. (完全)黒体 black body: 物体表面を処理し、外部から入射した熱放射を全て吸収する物体(理想的)

黒体放射(黒体輻射) black body radiation (空洞放射cavity radiation) → 物体種類・表面状態に関係ない

量子力学的状態では ⇒ ΔxΔph/2(調和脈動子 = 成立)

仮定: 振動数fの光の持つエネルギーの大きさはhfの整数倍に限られる ⇒ 量子論の始まり ∵ 整数倍となる = 光は計数可能 ⇒

Def. 光子 photon: 光の計数単位
Law. プランクの放射法則 Planck's law of radiation (Planck 1900)

振動数 v (波長 λ), 絶対温度 T
⇒ 黒体放射スペクトル, P(x) = x3/(ex – 1), x = hv/kT

Law. プランクの(黒体放射)法則: 物体表面から放射されるエネルギー量に関する法則
黒体放射は温度のみの関数で表せる = 黒体放射の具体的記述

c = 真空中の光速(≈ 3.00 × 108 m/s)

振動数 v, v + Δv, [v, v + Δv]間にあるエネルギー UvΔv (/cm3)

Uv = (8π(kT)3/h2c3P(x), x = hv/kT
UvΔv = 2kT·(x/(ex – 1))·1/8·4π(2v/c)2·Δ(2v/c)
λ = c/v, [λ, λ + Dλ]間のエネルギー UλΔλ

Uλ = D·(1/(e(hc/kTλ) – 1))·(1/λ5), D = 8πhc (constant)

黒体放射エネルギーはTのみで決まる波長λp(T)で極大値を持つ

Law. (Rewrite). プランクの法則
I(λ, Tλ = (2πhc2/λ5)·(1/ehc/lkBT – 1)·Δλ (J/s·m2)
Def. ボルツマン定数 Boltzmann constant, kB (or k)

= 1.38064852 × 10−23 J·K−1

Def. プランク定数 Planck constant, h = 6.62607 × 10-34 J·s

= 6.6262 × 1027 erg·s = 1.58 × 10-34 cal·s

Def. ディラック定数 Dirac constant (換算プランク定数 reduced Planck constant),

= 1.0545887 × 10-34 (J·s) = 1.0545887 × 10-27 (erg·s)

プランクの法則より導かれる2つの法則
Law 1. ウィーン(の変位)則 Wien's (displacement) law (Wien Whilhelm 1864-1928): 波長当りの光量子量(エネルギー量)が最大となる波長, λmax
λmax ∝ 1/T (高温物体ほど短波長の電磁波放出)

黒体放射 ⇒ λT = constant (2897), λ: 波長(μm), T: 温度
λλ + δλ間エネルギー密度, ρλ = (c1/λ5)e-c2/lt (c1, c2: constant)

⇒ 短波長で実測と一致

ρλ = (2πckBT)/λ4 (c: 光速, kB: ボルツマン定数)

⇒ 長波長で実測と一致 (Rayleigh, Jeans)

Law 2. シュテファンの法則 Stephan's law

W = 5.67 × 10-8T4 (W)
絶対温度Tの物体の表面面積1 m2から1秒間に放射される全エネルギー量はTの4乗に比例

Law. ステファン・ボルツマンの法則: I* = σT4

I*, 単位面積から単位時間に放射される全エネルギー量
Def. ステファン・ボルツマン定数, σ = 5.67 × 10-8 [Wm-2K-4]
Max(*) → 温度低くなるのに対し大きくなる

⇒ ステファン・ボルツマンの法則 + ウィーンの変位則 → 観測結果から太陽表面温度推定可

Law. キルヒホッフの法則: 放射率 = 吸収率

⇒ 放射をよく吸収する物体はよく電磁波を放射

quantum ⇓ 両式矛盾解決 (Planck)

量子説

重ねあわせ可能: ψ1(x) + ψ2(x)

Δx: 位置の幅
Δp: 運動量 (cf. ばねの力の大小)
水素原子の安定性

ΔxΔpx ≥ h/2: かなり大なら古典力学に一致 … (1)

x軸方向の運動量の幅: Δpx = Δ(pxpxavg)2 → (Δpx)2 = (pxpxavg)2
pxavg = 0, Δpx2 = pxavg2 [水素は静止している]
→ (1)が等しいなら(大抵は成立): pxavg2 = (h/2Δx)2 = (h/2r)2
両辺をΔxで割り2乗
quantum
(1/2m)(px2 + py2 + pz2) = (3/2m)(h/2r)2 = (3/8m)(h2/r2)
px2 + py2 + pz2: moment energy ⇒ ∴ E = 3/8m·h2/r2e2/r
2E/2r = 0 (Min(E) → radius)
-3/4m·h2/r2 + e2/r2 = 0
r = (3/4)·(h/e2m)

中性子 (neutron)

中性子束(中性子束密度) neutron flux: 中性子挙動が集団としてもつ効果を記述するため導入された量
中性子流密度ベクトル(中性子流) neutron current density vector: 中性子の流れ

定量的に表現する場合は、流れの方向に垂直な単位面積を通り単位時間に流れる正味の中性子数

熱中性子thermal neutron: 原子核の熱運動のエネルギーと同程度のエネルギーをもつ中性子

20°Cの媒質中では熱中性子のエネルギーは約0.025 eV。2200m/sの付近にマックスウェル分布

高速中性子 fast neutron: 一般にエネルギーが0.1 MeV 以上の中性子

cf. 冷中性子(冷たい中性子) cold neutron

中性子寿命 neutron life time: 中性子は吸収・漏洩等で体系中に存在しなくなる。このとき中性子の平均的寿命
1900 Planck Max EL 1858-1947, 独

プランク量子仮説 = エネルギーはある単位量の整数倍で表現可能
→ エネルギー量子(それまでエネルギーは連続量として扱われた)
1調和振動子の得るエネルギー値は不連続 = 振動数vの振動子はhvで与えられるエネルギーの整数倍値
⇒ エネルギー授受はhvを単位に行われる ≡ 量子条件 quantum condition
量子化 quantization: hvより小さい振動子を与えても振動子は励起されない

作用量子action quantum ≡ hv

熱放射に関する式 ρλ = (8πhc/λ5)/(1/ehc/hTλ–1) → 実測値とよく一致

1905 Einstein: 光量子仮説 light quantum hypothesis

= エネルギー粒子存在

1887 Hallwachs, Wilhelm 1859-1922, 独

ハルワックス効果(光電効果 photoelectric effect)
光電子放出 photoemission, photoelectron emission) = 光電効果

↔ 逆光電子放出 inverse photoemission = 逆光電効果 inverse photoelectric effect

紫外線照射で真空中に負帯電した物体(金属)が電荷を失う現象 → 電子放出による

Def. 光電子 photoelectrons: 飛び出てくる電子

光起電力効果 photovoltaic effect: 物質に光を照射することで起電力が発生する現象。光電効果の一種

→ 光起電力 photovoltaics → 光起電力変換 photo voltaic conversion
光電増倍管 photomuitiplier, PMT: 高感度光検出器

光電管(光電効果利用し光エネルギーを電気エネルギーに変換) + 電流増幅(= 電子増倍)機能

光電子放出の第1法則 first law of photoelectric emission
光電子放出の第2法則 second law of photoelectric emmision
光電子放出の第3法則 third law of photoelectric emmission
熱電子放出thermoelectronic emission (therminic emission): 熱により電子を放出し電荷を失う

熱電子 thermal electron (thermoelectron): 金属等の表面を加熱 → 表面から熱励起され飛び出す電子

von Lenard, Philipp EA 1862-1947

放電効果特性 – 1, 2, 4は古典力学で説明不可

  1. 金属への照射光の振動が金属種で決まる一定値より小 → 光を強くしても電子飛び出さない
  2. 飛び出した電子の持つ運動エネルギー最大値は照射光強度に関係なく振動数のみで決まる
  3. 単位時間に金属から飛び出す電子数は照射光の強さに比例(古典力学で説明可能)
  4. 照射光が弱くても、光を照射すると殆ど同時に電子が飛び出す

⇒ 量子説採用: 光は光量子(光子) photonというエネルギーの塊からなる (cf. 音子 phonon)
⇒ 振動数vの光量子1個のエネルギー, E = hv
仕事関数 working function, W: 金属表面1個の電子が表面から出るのに必要なエネルギー

電子が飛び出す条件: hv > W
飛び出した電子の持つ運動エネルギー最大値: 1/2·mvmax2

= hvW

量子的状態と物理量
コンプトン効果 Compton effect (Compton Arthur H 1892-1962)

トムソン散乱 Thomson scattering: X線が物質に入射 → 入射X線と等しい波長のX線が散乱
コンプトン散乱 Compton scattering: X線のエネルギーが10万電子ボルト(eV)以上

→ トムソン散乱の他に、入射X線より波長の長いX線が散乱される [コンプトン効果]

1914 ラウエLaue (1879-1960)の斑点Laue spot

X線を原子結晶に照射 → 回折X線が干渉縞生じる
→ X線は波長の短い電磁波であることが示される

1923 Compton: X線 = 光量子 → 物質原子内の電子と衝突

入射X線: エネルギーの1部を電子に与え、より小さいエネルギーのX線となり散乱する
⇒ 電磁波: 波動性と粒子性から説明 [矛盾存在]

物質波 matter wave
= ド・ブロイ(の物質)波 de Broglie matter wave
de Broglie Louis V 1892-, 仏
1923 物質波概念 → 電子も波動とみなせる

1927 実験的に証明される ⇒ 電子波 electron wave

1924 ド・ブロイ波長 de Broglie wave length, λ: 光 = 光量子 → 物質波存在

λ = h/p = h/mv (m: 質量, v: 速度) Def. 運動量, p = mv
運動エネルギーが 1/2·mv2 = p2/2m = h2/(22) = eVとなる電磁波のドブロイ波長

λ = h/√(2meV) = √(105.4/V) × 10-10 (meter)

2πa = (n = 1, 2, …), a: ボーア半径, λ: 電子波波長(ドブロイ波長)
∴ 2πmva = nh ⇒ ボーアの量子条件

⇒ 力学的な波 mechanical wave: 媒質が必要な波

Ex. 音 ↔ 力学的でない波 Ex. 電磁波

波動力学 wave mechanics

Schroedinger Erwin 1887-1961, オーストリア

観測可能な量と概念のみから構成(実証主義的)
1. 不確定性原理
2. 相補性原理complementarity's principle
1925 Heisenberg 1901-1976, 独

対応原理 → マトリックス力学 → 波動力学と同じ → 「量子力学」に統一

水素: ニュートン運動方程式

quantum
電子はやや内側を回
る螺旋軌道をとる

E = -e2/(2r) [ポテンシャルエネルギーの半分]
d/dt(–e2/2r) = –(2e2/3c3)α2 … (1)

毎秒電磁波を放出(減少)

m(-v2/r) = -e2/r2α = v2/r = e2/mr2

rに関する微分方程式

dE/dt = d/dt(-e2/2r) = (e/2r2dr/dt … (2)
(2) – (1) ⇒ (e2/2r2dr/dt = (-2e2/3c3)(e2/mr2)2
dr/dt = -(2e2/3c3)·(e4/m2r4) (2r2/e2) = -4/3·(e4/m2c3)·(1/r2)
ここでr = αt, t = (α/c)τ, αe = ħ/(e2m), 1/(αe2) = e4/ħ4
dr/dt = -4/3·e4/m2c3·1/{c2(r/ae)2} = -4/3·e2/m2c3·1/ξ2
ħ/me2·/dt = -4/3·e6/4·1/ξ2
/dt = -4/3·e8m/c3ħ6·1/ξ2 = -4/3·(e2/ħc)4·mc/ħ·1/ξ2

Case. 水素 → 上記微分方程式でd/dt(-e2/2r) = -2/3(e2/mr2)2

e2dr/(2r2)dt = (2e6)/(3c3m2r4) … (1)
r =set αx, t =set (α/c)τ ∴ {α/(α/c)}·(dx/) = –4/3·(e4/c3m2α2x2)
dx/ = –4/3·(e4/c4m2)·(e4m2/h4)·(1/x2)
α = ħ2/(e2m) = -4/3·(e2/hc)4·1/x2 (e2/ħc = α)
1/α2 = e4m2/ħ4
3x2dx = –4α4
x3x03 = –4α4dΔτ
Δτ = x03x3 = 7/(32α4)
A. Δt = (7/32α4a/c

量子力学の構成

quantum 量子力学的状態: ψ(r) ⇒ 位置座標の関数

重ね合わせ可能: ψ(r) = ψ1(r) + ψ2(r) ⇒ 加えたもの

→ やはり量子力学的状態を示す(波動のように)

AB共に開けた写真 = ψ(r) (Aのみを開け撮った写真) + ψ(r) (Bのみを開け撮った写真) [重ね合わせ]

物理量___作用素
__R_____r
__P_____∀ (i: 虚数)

物理量の値: ∧cr: 座標と運動量の関数 ↔ –∀(φ(r)) = λφ(r): 固有値

状態の時間変化: iħ∂ψ(r, t)/ψdt = H(r, –∨)ψ(r, t)

⇒ 座標と運動量(Shoroedinger方程式)

物理量の期待値: ∧exp = ψ*(r, t)∧(r, -∨)ψ(r, t)dr

量子力学の作用素: 古典 → 量子

x, y, xx, y, z
px → -iħ∂/∂x, py → -∂/∂y, pz → -∂/∂z
p → -
∧(r, p) → ∧(r, –ħ∨), ∨ = /∂x, /∂y, /∂z

位置 = 位置座標(古典、量子)

運動量 = 1つの実数(古典) / 1つ1つの作用素(量子)

エネルギーの作用素

古典__________________量子
px2________________ → (-ħ∂/∂x)2(-iħ∂/∂x) = -ħ22/∂x2
(1/2m)(px2 + py2 + pz2) → -ħ2/2m(2/∂x2 + 2/∂y2 + 2/∂z2)
運動エネルギー:
mv2/2 = (m/2)(vx2 + vy2 + vz2) = (1/2m){(mvx)2 + (mvy)2 + (mvz)2}
mvx = px, mvy = py, mvz = pz
(1/2m)P = (–ħ2/2m2 = (–ħ2/2m)∀2
Δ = 2/∂x2 + 2/∂y2 + 2/∂z2 = ∀
2 = (/∂x, /∂y, /∂z)
_____ポテンシャルエネルギー

固有値と固有状態

運動量のx成分
(∂φ(x)/∂x) = px'φ(x)
∂φ(x)/∂x = ipx'/ħφ(x)
φ(x) = ceipx'(x/ħ) = cei2π(x/λ) = cosx + isinx
ex = Σn=0(xn/n!), eix = Σn=0((ix)n/n!) 波長λの同調周期
px'/ħ = 2π/λ
λ = 2πħ/px'

⇒ 運動量pの粒子にはλ = 2πħ/px'の波動が伴う
Ex. 60 kgの人が10 m/sで走る:

p = 60 kg/10 m/sec = 6 × 104 × 103 cm·g/sec = 6 × 107 cm·g/sec
λ = 2πħ/px' = 2πħ/(6·107) = (6·10-27)/(6·107) = 10-34
→ 観測出来ない
水素原子 p = 0.9 × 10-27 g × 108
λ = (6 × 10-27)/(0.9 × 10-27 × 108)
→ 質量が小さいほど波動は顕著

角運動量(成分と運動量): 極座標P(r, φ, θ)

z成分: xpyypz > –(x∂/∂yy∂/∂x)
x = rsinθcos, y = rsinθcosφ, z = rcosθ, r = √(x2 + y2 + z2)
r2sinθ = x2 + y2
tanθ = {√(x2 + y2)}/z
tanφ = y/x
x∂/∂yy∂/∂x = /∂φ[∂/∂x = ∂r/∂x·∂/∂r + ∂θ/∂x·/∂θ + ∂φ//∂φ]
(∂Φ/∂φ) =
Φ = ceimφeimφ/ħ = eim(φ+2π)/ħ = eimφ/ħ·eim2π/ħeim2π/ħ = 1
m/ħ = mm = mħ (m = integer × ħ)
φを2πに変えても値は同じだと仮定する (2πの不定性)

角運動量の値: 大きさ, z成分

角運動量の2成分を同時に確定することはできない → 大きさと1成分が同時に確定した値を持つ

動径方向の運動__回転運動の大きさ
____l = 0________s状態 (sharp)
____l = 1________p状態 (principle)
____l = 2________d状態 (diffuse)
____l = 3________f状態 (fundamental)

ナトリウムスペクトルの特徴から名付けられる
3D (大文字) = 全体, 2s (小文字) = この粒子の運動状態を表わす

水素原子のエネルギー: Schroedinger wave equation
エネルギー作用素

H = (r/2m)p2e2/r → (-h2/2mv2e2/r

運動エネルギーとポテンシャルエネルギー

[(h2/2m)(2/∂x2 + 2/∂y2 + 2/∂z2) – e2/r]Ø(r) = (r) 固有方程式

(E: 水素原子のエネルギー)

E = -(e2/2a)(1/n2) = -(2m/2h2)(1/n2)

a: ボーア半径 Bohr radius
n: +の整数
n = 1: エネルギーが1番深い(低い) E → 大 … エネルギー大
n = 2: (n = 1)の1/4倍↑

電子の質量: 換算質量 μ = mM/(m + M) ⇒ m/(1 + m/M) ≈ m

電子・原子の構造


殻電子
内殻電子 core electron: 最外殻電子(価電子)の軌道より内側にあるもの

原子間の化学結合や、物性に影響を与えない ↔ 比較的浅い軌道の内殻電子(Ex. ガリウム3d電子)や、内殻励起のような現象では内殻電子が関与

電子配置 electron configulation, electron arrangement: 原子を構成する電子の軌道上の配置

原子構成電子の振舞 → 原子核による静電ポテンシャル中の3次元シュレーディンガー方程式を解き得る

電子雲 electorn cloud: 分子やイオン形成時に重要

電子軌道: 主量子数n、方位量子数l、磁気量子数mの3つで指定

n: 軌道の大きさとエネルギーを決定 (n = 1, 2, 3 …, n: integer)

→ 電子殻K殻、L殻、M殻 … に対応

l: 軌道の形を決定(l = 0, 1, 2, …, n – 1)

s軌道, p軌道, d軌道, f軌道 … に対応

orbital

図. 電子配置

m: 各軌道を決定(-l, -l + 1, …, 0, …, l - 1, l, m: integer)

Ex. n = 2, l = 1を総称し2p軌道 → 3種類のm = (-1, 0, 1) → 2px, 2py, 2pzの配位をもつ3軌道存在

電子 = フェルミ粒子 → パウリの排他原理: 1軌道には互いに逆向きスピンをもつ2個の電子しか入れない
Def. 電子対: 軌道が2つの電子によって占有された状態 ⇒ 電子対生成 electron pair creation

Ex. 2p軌道 = 最大6電子収容
Ex. 3d, 4d等のd軌道 = 10個
Ex. 4f等のf軌道 = 14個

殻スペクトル波長: 1/λ = R·(1/n12 – 1/n22)

R: リュードベリ定数 Rydberg constant

電子捕獲 electron capture Ex. K捕獲 K-capture
電子スピン共鳴 electron spin resonance (ESR): 不対電子を検出する分光法の一種

1電子原子: 水素、ヘリウムイオン、Li
原子中の電子のエネルギー状態

水素原子のエネルギー
Em = e2/(2an2), a: ボーア半径(電子の換算質量を用いた)
l = n – 1, n – 2, …, 1, 0
(n = 1, l = 0), (n = 2, l = 0.1)
E = – (Z2e2)/(2an2)
角運動量 √{l(l + 1)}·h: l = 0, 1, 2, … (-lml)

orbital

水素原子
原子の中のエネルギー状態
Ex. 水素原子のエネルギー

1s (l = 0の時) → n = 1__
2s_________n = 2__ ○ 外側の方に存在する確率大
3s_________n = 3__
orbital

orbital 角運動量の固有状態(l = x, M = y)
水素原子のエネルギー準位

電子がどのようなエネルギーを受け取るか
エネルギーは同じだが状態量が違う
電子の運動状態により変化
陽子の回り: r(l): 回転運動, (n): 動径方向運動



電子のエネルギー補正
1. 相対論的補正

ΔE = (Z2d2/4n2){3 – 4n/(l + 1/2)}|En|
H = (m2c4 + c2p2)1/2 + V = mc2 + p2/(2m) – p4/(8m3c2) + V

2. 原子核からの磁気エネルギー

電子の磁気能率: μ, 原子核による磁場: H, エネルギー: W
W = -μH
If 電子は静止 → 回りを原子核が回る。電子の回りに電気が流れ磁場できる。電子は磁気能率持つはず
磁気能率 ⇔ 磁場
逆向きの方がエネルギー大

多原子系と原子価: μ, H, Wの表式
[μ] 荷電, q ⇒ 一周時間, T = 2πr/v 半径: rs: 面積 速さ: vc: 光の速さ

iT = q ⇒ 電流 i = q/T = qv/2πr
磁気能率 i·s = (qv/2πr)·(πr2/c) = qrv/2c = qrmv/2mc = q(L)/2mc

角運動量: σ

orbital

μの向き↑, δの向き↓
電子= –(e/mc)(h*/2δ)
m = (eL)/(2mc)
角速度 = v/r
h/2 = 3/5·mr2θ = (3/5)mrv
r = 5h/6mv ≈ 3 × 10-11 cm
→ 有り得ない。よって、h/2という角運動量は電子が自転するためのものではない

[H] = 1/c(i/r3)[dS × rZee] = Zev/cr orbital

H = ZeLe/mcr3, cr: 単位ベクトル


[W] = -μH = –{(–e/mc)·(h/2)·σ}·(Ze/mc)(Le/r3) = Ze2/(mc)2·1/r2·(h/2)·σLe orbital

相対論的補正
時間の違い: W × 1/2
回転運動と電子自身の角運動量の求め方は2通り

↑↑ΔE = (Z2α2/4n2)·4n/{(2l + 1)(l + 1)}|En|
↓↓ΔE = (Z2α2/4n2)·[-4n/{(2l + 1)·l}]|En|

1. 全補正
2. 相対論的補正 + 磁場

↑↑(z2α2/4n2)·|En|·[3 – 4n/(l + 1/2) + 4n/{(2l + 1)(l + 1)}]

= z2α2/4n2·|En|·{3 – 4n/(l + 1)}
j = l + 1/2↑

↓↓(z2α2/4n2)·|En|·[3 – 4n/(l + 1/2) – 4n/{(2l + 1)l}]

= z2α2/4n2·|En|·(3 – 4n/l) = z2α2/4n2·|En|·{3 – 4n/(j + 1/2)}
j = l + 1/2↓

真空で電磁場ができたり消えたりしている

固体のエネルギーバンド(バンド)
Ex. 水素ガスを圧縮し固体にする → 原子間距離↓ → 原子間相互作用↑

orbital
個々の原子から形成される
エネルギー準位が原子間相互作用でズレ、レベルに幅が出る ⇒ バンド形成

価電子帯(充満帯): 価電子 valence electronが入るバンド → 伝導帯 conduction band
⇔ ギャップ gap: 電子がとることのできないエネルギーの範囲

Def. 電気回極能率: 価電分布を示し球形からどれくらい歪んでいるかを示す率

原子核エネルギー

orbital ZAXの質量m(ZAX)は質量数Aほぼ比例 → 精密測定では異なる
原子核結合エネルギー binding energy of nucleus (1核子の結合エネルギーbinding energy of nuclear particle)
質量 12C: Mass = 12 (原子質量単位atomic mass unit, a.m.u., AMU)

原子 = 12 AMU (1 AMU = 1.6605655 × 10-24 g)
E = mc2より

エネルギー: mp = 陽子の質量, mn = 中性子の質量

mp = 1.6726485(86) × 10-24 g
mn = 1.6749543(86) × 10-24 g
md = 3.3436376 × 10-24 g
mp + mnmd = 0.0039652 × 10-24 g
ΔE = Δmc2 = 3.563744 × 10-6 erg

原子核エネルギー

E = [M(ZN) - ZmH - Nmn]c2 = -B
orbital mn = 1.6749543 AMU
mH = 1.0078248 AMU [1 AMU → 931.5016 MeV]

一核子: E/A = -8 MeV = 原子核のエネルギー/核子

(核)質量欠損 (nuclear) mass defect: 原子核を作っている核子の質量の和からその原子核の質量を引いた値

核磁気共鳴(磁気共鳴) nuclear magnetic resonance, NMR
原子番号と質量数が共に偶数ではない原子核 → 0でない核スピン量子数Iと磁気双極子モーメントを持つ

⇒ 原子 ≈ 小磁石 → 磁場をかけると磁石(原子核)は磁場ベクトルの周りを一定周波数で歳差運動

Def. ラーモア周波数 Larmor frequency: 原子核の磁気双極子モーメントの歳差運動の周波数
Def. 核磁気共鳴: 原子核に対しラーモア周波数と同周波数の回転磁場をかける → 磁場-原子核間に共鳴発生

磁場中の原子核はゼーマン効果で磁場強度に比例した一定エネルギー差持つ2I + 1個のエネルギー状態
→ エネルギー差は周波数がラーモア周波数の光子の持つエネルギーと一致
→ 共鳴時に電磁波の吸収あるいは放出発生 → 共鳴現象検知できる [応用] 原子核内部構造研究

化学シフト: 原子核ラーモア周波数が原子の化学結合状態等で僅かに変化 [応用] 物質分析・同定

核磁気共鳴分光法 nuclear magnetic resonance spectroscopy, NMR: 核磁気共鳴でスペクトルを得る分光法

素粒子論 (素粒子物理学, theory of elementary particles / elementary particle physics)


中性子 → 電子electron + ニュートリノ(中性微子) neutrino + 陽子
陽子 → 陽電子(ポジトロン) positron + ニュートリノ + 中性子
1934 湯川秀樹(1907-1981): 中間子論(1935)

→ 核力の原因は中間子存在し、それが核子間でやりとりされる
= 中間子(メソン) meson存在予言
核力の到達距離, d = h/2πmπc (mπ, パイ中間子の質量)

d ≈ 2·10-15 m → パイ中間子質量は電子の質量の200倍と予測

1947: パイ中間子が発見実証される

Def. 素粒子 elementary particle: 物質を構成する最小単位 = それより小さな存在がない(他分野に影響)

= 内部構造持たない = 空間的な大きさを持たない
→ 超弦理論: Def. 素粒子: 有限な大きさを持つ紐の振動状態
素粒子(現在の): クォーク quark・レプトン lepton ⇒ 内部構造存在発見 → 内部構造構成 = (新)素粒子

Law. パリティの法則(パリティ則) law of parity, parity law

⇒ 素粒子の空間的対称性 = 全原子は左右対称

1956: 李政道・揚振寧 (中国, ノーベル賞): パリティーの法則否定
クォーク: 6種類 = アップ + ダウン + ストレンジ + チャーム + トップ + ボトム ハドロン: クォークから構成される粒子

中間子: クォーク-反クォーク対で構成(偶数個フェルミ粒子 → 中間子自体はボース粒子) + パイ中間子
バリオン: クォーク3つで構成 + 陽子(原子核を構成する, uud) + 中性子(原子核を構成, udd)
エキゾチックバリオン: 3より多くのクォークから構成される系 + ペンタクォーク(計5つのクォークと反クォーク)
Def. ストレンジネス = 反ストレンジクォークの数 - ストレンジクォークの数
Def. チャーム = チャームクォークの数 - 反チャームクォークの数
Def. バリオン数: バリオン = 1, 中間子 = 0で定義される数

バリオン数の保存則 law of conservation of baryons
レプトン数の保存則 law of conseveration of leptons
ハイパーチャージ(超電荷)保存則 law of conseveration of hypercharge

Def. ハイパーチャージ = ストレンジネス + バリオン数
ファインマン図(ファインマンダイアグラム) Feynman diagram: 素粒子の振る舞いを記述する方法

素粒子を見る
⇒ 加速器 accelerator: 多くの粒子は、自然界に殆ど存在せず加速器で発見・研究
コックロフト・ウォルトン装置 Cockroft-Walton's apparatus: 高電圧人工加速装置(1932完成)
粒子加速器 particle accelerator
ファンデグラフ加速器 Van de Graff accelerator
衝突型加速器 colliding-beam accelerator
超衝突型加速器 supercollider
サイクロトロン cyclotron
シンクロトロン synchrotron: 円形に並べた多数の電磁石の磁極間にリング状真空箱を挟んだ装置

リングの数箇所に粒子加速管挿入。電子・陽子はリング中回転し、加速管を10万回/sec以上通過し、その度にエネルギー増大。電磁石の作る磁場の強さは、粒子エネルギー増大に同期し増大され、粒子はそのエネルギーに関係なく常にリング内で同軌道を描き加速され、電子・陽子は光速位まで加速される シンクロトン放射(放射光) synchrotron radiation: 加速器(蓄積リング)から得られる電磁波

カミオカンデ KamiokaNDE, Kamioka Nucleon Decay Experiment (小柴昌俊, 2002ノーベル章)

1987: 超新星爆発からのニュートリノ捕える

4つの量子数 quantum number
  1. 主量子数 principal quantum number, n: 核からの距離に関連する量子数
  2. 核運動量量子数, l: 電子の確率分布の形に関連する量子数
  3. 磁気量子数, m: 電子の確率分布の方向に関する量子数
  4. スピンspin量子数, s: 電子の自転の方向に関連する量子数
Law. パウリの排他原理 exclusion principle of Pauli (Pauli's principle, Pauli's exclusion principle)

1原子中で2電子が4量子量全てに渡って同値はとれない

H. エルゴード仮説 時間的平均(仕事) ≡ 空間平均(経路)
バークホッフ Birkhoff: 位相空間 = 粒子の自由度の数だけ座標軸がある

N2 → 6N次元 = 3N(運動量) · 3N(座標) [ミクロ的]
Gτ = 1/τ·t0t0+τG(P)dt
G⟨ = G(P)dr/∫dr

P: 位相空間内の1点
G(P): 物理量(Pの関数)
G(Pt): ある時刻における物理量
dr: 6N次元の体積

Th.G = ⟩G⟨
______τを無限にすると

仮定: 位相空間が2つの不変部分に分解出来ない
不変部分: 任意の軌跡が自然運動の間、内部に留まる


閑話休題: ウィルソンの霧箱 Wilson cloud chamber: 粒子飛跡を検出する基礎的装置
Wilson (英, 1869-1959): 1987 基礎原理発見, 1911 実用装置完成

chamber
原理: A: ガラス, R: ゴム・パッキング,
P: ピストン, B: 黒ビロード, ★: 光源

[容器] 上部・側部: ガラス窓のある数cm φ, 下部に可動ピストン
容器中に水蒸気を飽和させた清浄空気入れる
→ ピストンを素早く引く → 容器体積膨張 → 温度低下 → 水蒸気過飽和状態 → 中に荷電粒子飛び込みイオン形成 → イオンに沿い水滴凝結し飛跡見える
写真撮影可(飛跡見やすいよう側面から光を当てたりする)
霧箱を磁場中に置く → 荷電粒子軌道曲がる → 曲率curvature半径等を測定し粒子に関する情報を得る
現在は泡箱・放電箱主流 - 教育目的以外稀 (歴史的重要性)

放電箱 spark chamber
泡箱 buble chamber: 液体を過熱状態にし荷電粒子通過により小泡を作り素粒子・放射線飛跡観察に使う

電子ビーム(電子線) electron beam
電子銃electron gun, e-gun: 固体中の電子を熱や高電界により空間に放出させ、これを電界で加速すると共に電子レンズによりビーム状に収束させ照射する装置 Ex. 高分解能電子顕微鏡

原子核の構造

原子の形 = 原子核表示

核子数
__ 23592U143
__陽子数_中性子数

n, p, t3H, [τ, h] → 3He, α4He, d2H
Λ, Σ: バリオン(重粒子 現在使わない) baryon [barys = Gr. 重い]
電子の散乱
原子 ~10-8Å, 原子核 ~10-13 - 10-12 fm (fm = 10-13 cm)
電子が原子核の中を通る時

原子核の中心付近: 受けるクローン力弱い ↔ 原子核の外の方: 受けるクローン力強い
electron
153MeV電子の197AUによる散乱
微分断面積: (A)(B)は右分布に相当する
electron

水素原子内電子の状態数

表わす記号:

n = 軌道運動
En = エネルギー
l = 回転運動 → τ = 角運動量
m = 質量
↑↓: スピン角運動量の状態のとり方

n = n0 + l + 1 (n0 = 0 - ∞)
l = 0, 1, … n-1
-l, l + 1, … l - 1, l
⇒ 2n + 1
↑↓: 2
Σl=0n–1(2l + 1)·d = 2n2 ⇒ 周期率表を決める

He原子
電子が受ける作用 → He原子の基底状態で1つの電子の感じるポテンシャル
第1イオン化ポテンシャル -25 eV (cf. H: -13.59 eV ほぼ2倍)

場所によりチャージ変化のあるポテンシャルと考えられる
electron
electron

Pauliの原理: 1状態には1個しか電子は存在し得ない

Li原子の第一イオンポテンシャル = -5 eV ← 水素よりやや低くなってしかるべき

Na原子
l = 0, 1, 2, 3に対するNa原子のエネルギー準位

electron
ポテンシャル potential
z(r)という関数: rが小さいほど大きくなる → エネルギーは低くなる
electron
Li原子: 電子軌道の存在確率

原子スペクトル

全原子の[水素原子を基準とした]エネルギー状態
ある原子から電子を1個取り出すエネルギー → ゼロエネルギーより低い所にあるか
第1イオン化エネルギー: 1番高い状態にある電子を取り出すエネルギー

electron
実際と食い違う = He: 2個のチャージ(単位チャージの2倍) → 低すぎる
Heが1個の電子の感じるポテンシャルが「場所によりチャージが変化する様なポテンシャル」のように考えられる原因 = 極めて遠くではHのクーロンポテンシャルと同じ。極めて近くではHeのクーロンポテンシャルと同じ ⇒ 全体としてその中間的値に確率分布

→ -e2/r·f(r): i) r » a: f(r) = 1, ii) r « a: f(r) = z

z → 大 ⇒ 電子の存在確率が外の方に向かう ⇒ 内側のクーロンエネルギー(波動関数)が大きくなる

f(r)を求める: -c2/rとポテンシャルを与えればShrödinger方程式が解ける electron
水素原子の3s, 3p, 3dの波動関数

矛盾が出たらやり直す → SCM (self consistent method)

Na原子のエネルギー準位

R = 1.0~1.2 × A1/3 fm (1.1 × A1/3 fm)
密度: 2.72 × 1014 g/cm3

rp = 0.085 ± 0.11 fm ⇒ 正分布
rm = 0.36 ± 0.11 fm ⇒ 負分布
(rp)c2 + 2 = 0.8052
(rp)c22 = -(0.36)2
核子自身の芯半径 = 0.51 φm, πの半径

= 0.62 φm (隣の核子までの距離 = 1.85 φm)

分子moleculeと原子核(核) nucleus (pl. nuclei)

electron
分子: ぎっしりつまってる
中間質量の変化とα粒子の結合(OPEG)
electron

水素のスペクトル線グループ(他にもある)

バルマー系列 Balmer series
ライマン系列
パッシェン系列
ブラケット系列

Ritz Walter (スイス 物理学者, 1878-1909)

リッツ結合則 Ritz combination principle考案
原子スペクトル va, vbで発光する原子 → vc = va + vbでも発光

空間の回転とスピノール
スピンの自由度 degree of freedom on spin
異常ゼーマン効果 Zeeman effect: 電場をかけたとき原子スペクトルが偶数本に分岐

→ 電子はスピン1/2の粒子 → 2つのスピン成分(sz = ± 1/2)を持つ
電子の波動性 wave nature of electron
⇒ 電子の波動関数 ψ(x, t) = ψ1+1/2 + ψ;2u-1/2

[2成分複素ベクトル ≡ スピノール]

反陽子の科学
⇒ 共存不可能 = 直ちに消滅
粒子 particle vs 反粒子 antiparticle

粒子 particle vs 反粒子 antiparticle

陽子 vs 反陽子anti-proton
電子 vs 陽電子anti-electron
中性子 vs 反中性子antineutron
水素hydrogen vs 反水素anti-hydorgen (他原子にも存在)
ニュートリノneutrino (ν) vs 反ニュートリノantineutrino (ν-)

質量がゼロか電子の質量以下の中性粒子

物質 matter vs 反物質 anti-matter
宇宙 universe vs 反宇宙 anti-universe

対生成 pair creation: 高エネルギーを持つ光子が衝突 → 粒子と反粒子が生成される

↔ 対消滅 pair annihilation: 粒子と反粒子が衝突しエネルギーないし他粒子に変換される現象

相対性理論 theory of relativity


慣性(座標)系:
O-XYZ =set 静止系
O'-X'Y'Z' =set 運動系(各座標軸が静止系に常に平行に運動する座標)

relativity P(x, y, z) 静止系からの座標
P(x', y', z') 運動系からの座標
x = x0 + x', y = y0 + y', z = z0 + z'
[ガリレイ変換 Galilei transformation] →
dx/dt = dx0/dt + dx'/dt
dy/dt = dy0/dt + dy'/dt
dz/dt = dz0/dt + dz'/dt

d2x/dt2 = d2x0/dt2 + d2x'/dt2
d2y/dt2 = d2y0/dt2 + d2y'/dt2
d2z/dt2 = d2z0/dt2 + d2z'/dt2

⇒ (dx/dt, dy/dt, dz/dt) ≡ 絶対速度 absolute velocity

静止系に対するP点の速度

⇒ (dx'/dt, dy'/dt, dz'/dt) ≡ 相対速度 relative velocity

運動系に対するP点の速度

⇒ (dx0/dt, dy0/dt, dz0/dt) ≡ 変換速度transformed velocity

運動系の静止系に対する速度

絶対加速度 absolute acceleration (d2x/dt2, d2y/dt2, d2z/dt2)
相対加速度 reltaive acceleration (d2x'/dt2, d2y'/dt2, d2z'/dt2)
変換加速度 transformed acceleration (d2x0/dt2, d2y0/dt2, d2z0/dt2)
Galilei-Newton の相対性原理 (不変性 form invariance)
F(X, Y, Z): 質量mの質点に働く力(静止系)

m·d2x/dt2 = X, m·d2y/dt2 = Y, m·d2z/dt2 = Z

m·d2x'/dt2 = Xm·d2x0/dt2
__m·d2y'/dt2 = Ym·d2y0/dt2
__m·d2z'/dt2 = Zm·d2z0/dt2
運動系が静止系に対して運動しているために

m·d2x0/dt2, –m·d2y0/dt2, –m·d2z0/dt2は現れる

→ 力ではない
d2x0/dt2 = d2y0/dt2 = d2z0/dt2 = 0以外で運動法則成り立たない

⇒ 慣性系に対し等速度で進む(加速度持たない)座標系 = 慣性系

⇒ 互いに一様な速度で移動する全ての系
⇒ 物理学の基本法則は同じ(ガリレイ)
問題: 絶対静止した空間に固定した座標系は定められるか

エーテル ehter

Principle: ホイヘンスの原理 Huygens' principle
= 光波動基本原理 = 波動説
⇔ 粒子説 (Newton): 光は微小粒子 → 光反射説明可能、屈折説明不可能

(Huygens, Christian 1629-1695, 蘭: 数学・天文・物理。ホイヘンス接眼鏡は彼の名)
光: 音波が空気中振動で伝播するよう、媒質中の振動として伝播
→ 媒質 = エーテル(発見できず仮想的に作業物質 working substance (material)として設ける)

1801 Young, Thomas 1773-1829: 光の干渉interference現象発見

波動説支持(ホイヘンス説復活)

ヤングの干渉実験 Young's experiment for interference

スリットslit用いた光の干渉性を示す実験
(初期に縦波) 自説訂正し横波とする → エーテルは横波を伝播する物質でないとならない

1808 Malus, Etienne L. (1775-1812)

偏光 polarization (polarized light)発見
Brewster, David 1781-1868: Brewster's lawブルースターの法則

偏光角(ブルースター角) polarization angle (polarizing angle, angle of polarization, or Brewster angle)

1822 Fresnel, Augustin Jean 1788-1827, 仏

周波数・振動数単位フレネルは彼の名
光の干渉装置作成 → 偏光研究から光が横波と推定
Arago, Dominique Francois Jean 1786-1853, 仏

天文・物理・政治家(パリ理工科学校教授、パリ天文台長)
偏光、電流-磁気相互作用研究。和政支持者で7月革命機に政界入り(1830)、植民地奴隷制廃止に貢献。2月革命後臨時政府で陸・海軍大臣(1848)。Louis Napoleon(3世)クーデターにより失脚(1851)

Foucault, Jean B.L. 1819-1868: 光が波動であることを実験で示す

⇒ 横波: 弾性体中で発生 ⇒ エーテルは弾性体である必要
1873 Maxwell, James Clerk 1831-1879, スコットランド

数学的に電磁気現象が波動を生じることを示す → 電磁気現象はエーテル中の電場磁場振動(電磁波)
波動の進む速さの計算値が光の速さの測定値と一致 → 光は電磁波の一種と考える
1878: "光がエーテル中をあらゆる方向に同一の速さで進むなら、エーテル中を運動している地球上の我々に対し、方向によって光の速さが異なって見える"

1887 Michelson-Morleyの実験

Michelson, Albert A. 1852-1931: 1881 光干渉を用い、エーテルに対する地球の速さを求める(失敗)
Morley, Edward W. 1838-1923: Michelsonと共同研究 → 装置精度を上げる(1887)
relativity

GM1 = GM2 = l
G: 半透鏡. S, 光源. T: 望遠鏡. M1, M2: 反射鏡

GM1: 地球の運動方向
t1, t2: 光がGM1, GM2を往復する時間
v: 速さ
c: 光の速さ (c » v)
t1 = l/(cv) + l/(c + v) = 2lc/(c2v2)
t2 = l/√(c2v2) + l/√(c2v2)
t1t2 = 2l/√(cv)·(1/√(c2v2) – 1)

= 2l/c·(1/√(1 – v2/c2) – 1)
= 2l/c{(1 + 1/2·v2/c2 + …) - 1} ≈ v2l/c3

始めGM1を地球の運動方向に一致させる → 直角に回転させGM2を地球の運動方向に一致させる
→ 光がGM1, GM2を往復するに要する時間は2 × v2l/c3変化
理論値: 転中の望遠鏡視野の干渉縞: (2vl/c3)/(l/c) = 2λv2/c2λ = 0.37

→ 縞は波長の1/3ずれる
仮定: λ, 光波長 = 5.89 × 10-5 cm。l = 11 m

エーテルに対する速さ = 恒星に対する速さ(30 km/sedc)

実験値: < 0.02 ⇒ 地球がエーテルに対し運動している証拠なし

1888 Hertz, Heinrich Rudolph 1857-1894, 独

光波 = 電磁波 → エーテルは弾性体と考える必要ない

1893 ローレンツ・フィッツジェラルドの短縮(収縮)

= Lorentz-Fitz Gerald contraction (両名が独立に発見)

Fitz Gerald, George F 1851-1901
Lorentz, Hendrik Antoon (1853-1928), 蘭(ノーベル物理学賞)

v: 速度, c: 光速度 ⇒ エーテルに対しvで動く物体は、その方向に(1 - v2/c2)1/2の割合で短くなる
⇒ 実験的証拠は得られない ↔ Michelson-Morleyの実験結果は、短縮により説明できる
⇒ [局所時local time仮定] 光は、あらゆる方向に同一の速さで進む

ローレンツ変換Lorentz transformation
relativity

静止系(OXYZ, t)
運動系(O'–X'Y'Z', t'), (O'Y' // OY, O'Z' // OZ, O'X = OX)
→ 2系の座標変換式

x' = (xvt)/√(1 – v2/c2)
y' = y
z' = z
t' = 1/√(1 – v2/c2)·(tv/c2·x)

特殊相対性理論 theory of special relativity

= 特殊相対性原理 principle of special relativity
1905 Einstein A 1879-1955, 独: 特殊相対性理論

= エーテル存在否定 → 空間自体に光を伝える性質存在
特殊相対性原理の2仮定 postulates of the special theory of relativity

1) 等速直線運動をする系では、全ての物理法則が同じ形で成立 ↔ 非相対論 non-relativistc theory
2) 光源運動の如何に拘わらず、光(の)速度speed of lightは一定 Ex. 2重星(連星) binary starの観測

⇒ 光速(度)不変の原理 principle of constancy of light velocity

互いに等速直線運動をする観測者に対し、光はあらゆる方向に同一の速さで伝わる
→ Lorenz短縮を相対性原理から証明

空間と時間 (現代原子論)

同時性
Ex. 静止系上の2点P1(x1, y1, z1), P2(x2, y2, z2)

relativity

同時刻tに起こった2現象を、静止系に対し速度vで運動する運動系から観測
→ 運動系で観測した2現象の時刻をt1', t2'とする

t1' = 1/√(1 – v2/c2)·(tv/c2·x1)
t2' = 1/√(1 – v2/c2)·(tv/c2·x2)
t1' – t2' = 1/√(1 – v2/c2v/c2(x2x1)
x2 = x1のとき以外は成立しない [x1 < x2ならt1' > t2' → P2で起こった現象を先に観測する]

⇒ 運動系では2つのことが同時に起こったことにならない

≡ [絶対時間は存在しない]

時間の遅れ time-lag (time dilation)
Ex. 静止系に対し速度vで運動する座標系上の点P(x')で起こる現象の経過時間を測定
t = 1/√(1 – v2/c2)·(t' + v/c2·x')
t1: 運動系から観測, t2: 静止系から観測
t1 = 1/√(1 – v2/c2)·(t'1 + v/c2·x'), t2 = 1/√(1 – v2/c2)·(t'2 + v/c2·x')
静止系で測られる現象の時間の長さ, T = t2t1 = 1/√(1 – v2/c2)·(t2' – t1')

t2t1 > t'2t'1

長さの短縮(収縮) length contraction
長さlの物体が速度vで運動
長さ: 両端が同時に占める位置の間の距離

→ 長さは物体の運動速度によって異なる測定がされる

物質と共に運動している座標系からみて時刻t'に物質の両端が占める座標

x'1, x'2l' = x'2x'1

t'に対応する静止形の時刻tにおける物質の両端の座標 → l = x2x1
[Lorentz変換] x1' = 1/√(1 – v2/c2) × (x1vt), x2' = 1/√(1 – v2/c2) × (x2vt)

x2' – x1' = 1/√(1 – v2/c2) × (x2x1) ∴ l' = 1/√(1 – v2/c2) × ll' > l

速度変換 conversion
静止系と運動系から観測した速度の間の関係

[Lorentz変換]
dx'/dt' = (dx/dtv)/{1 – v/c2·dx/dt}
dy'/dt' = {dy/dt·√(1 – v2/c2)}/(1 – v/c2·dx/dt)
dz'/dt' = {dz/dt·√(1 – v2/c2)}/(1 – v/c2·dx/dt)
[逆変換] v = –v
dx/dt = (dx'/dt' + v)/(1 + v/c2·dx'dt')
dy/dt = {dy'/dt'·√(1 – v2/c2)}/(1 + v/c2·dx'/dt')
dz/dt = {dz'/dt'·√(1 – v2/c2)}/(1 + v/c2·dx'/dt')

質点Pが運動系に対しX'軸の正方向に早さuで運動

dx'/dt' = u, dy'/dt' = 0, dz'/dt' = 0

これを静止系から見る → dx/dt = (u + v)/(1 + v/c2·u), dy/dt = 0, dz/dt = 0

Case. u = cdx/dt = (c + v)/(1 + v/c) = c
Case. u = c, v = cdx/dt = (c + c)/(1 + c2/c2) = c

⇒ 光速に光速が加わっても光速

相対論的質量 relative mass
→ 質量変化
静止質量 rest mass, m0: 観測者に対し静止しているときの物体の質量
物体が観測者に対し速度vで運動したときの質量, mv

mv = m0/√(1 – v2/c2)

エネルギー・質量保存則 law of conservation of energy and mass
= 質量・エネルギー保存則 law of conservation of mass and energy
⇒ 質量・エネルギー変換 mass-energy conversion

質量・エネルギー方程式 mass-energy equivalence

Def. T: 運動している物体の運動エネルギー

= 静止状態から運動状態になる際になされた仕事

T = mvc2m0c2, or E (全エネルギー) = mvc2 = T + m0c2

⇒ 運動している物体のエネルギーが運動による質量増加に光速の2倍をかけたものに等しい
⇒ 静止エネルギー, E0m0c2: 物体が質量を持てばエネルギーを持つ(逆も真)

E = E0 + T → Δm = ΔE/c2: エネルギーがΔE変化すれば質量もΔm変化する
Def. 結合エネルギーbinding eneryg

= 質量欠損 mass defect: 陽子-中性子結合後に減少した質量

⇒ 運動量, p = m0v√(1 – v2/c2)

m0: 静止質量 → 速度の1乗に比例しない

relativity 1908 Minkkowski Hermann (1864-1909)

相対性理論を空間と時間の4次元の幾何学として展開(4次元の世界)
t = 0 (原点) → 質点P(0, 0)

直線上をvで運動
OP2 = x12 + t12

光速 c: OP2 = x12c2t2
⇒ [3次元に拡張] OP2 = x2 + y2 + z2c2t2

Def. OP間の4次元間隔(時間空間) ≡ OP2

⇒ 時間と空間は別々に存在するのではない = 4次元の時空世界

(Einstein 1916)

一般相対性原理 principle of general relativity

特殊相対性理論: 等速度系 → 一般相対性理論: 加速度系[拡張] → 重力場があれば空間は曲がる = Riemann幾何学を応用
測地線 geodesic line: Riemann幾何学における2点間の最短距離 – Euclid幾何学の直線と同等

力の作用を受けない質点の軌道は測地線になる
重力場では空間は曲がった曲線となり、光は測地線に沿って進む

重力の強さによって空間の曲がり方は異なる
Ex. 1. 近日点 pelihelionの移動 ↔ 遠日点 aphelion
Ex. 2. 赤方偏移red shift ↔

ブルーシフト(青方偏位) blue shift: 近づく光源からの光が短波長側へずれること

光 light (光線 ray)
古典力学で波動性と粒子性は両立しない

波動 = 媒質中で伝わる振動 ⇔ 粒子 = 決まった質量を持つ物体

1) 光の光線モデル ray model of light = エネルギー粒子束(量子力学)

回折・干渉・偏光をうまく説明
c =

c: 真空中の光速度 (≈ 3 × 1010 cm)
v: 1秒間の振動数
λ (cm)

nm = c/cm

nm: 媒質mの屈折率
cm: 媒質m中の光速度
c > cmnm > 1 → スネルの法則

Ex. ray = 555 nm, ダイアモンド, nm = 2.42 → 2.42 = (30 × 1010)/cm

cm = 1.22 × 1010 cm/sec

1) 電磁場の変化: 波動 → 電磁波としての扱い ⇒ 光 = 電磁波
⇒ 光の二重性: 排他的なものではなく共存可能

光は空間を波として伝わり、物質によって放出・吸収される時は粒子として振舞う

Def. 干渉 interference: 光(電磁波)ぶつかる

→ 力増constructive減destructiveさせる現象

(可)干渉性 coherence
干渉縞 interference fringes 

チェレンコフ放射 Cherenkov radiation
屈折率nの媒質中: 光速 = c/n (c, 真空中光速)

relativity
高速荷電粒子がこれより速く媒質中を進む → 荷電粒子周囲の電磁場が後に「置いてきぼり」

→ 波面重なり衝撃波発生 ⇒
Def. 衝撃波 shock wave (sonic boom) = チェレンコフ放射(-光)

放出角度は衝撃波の波面が荷電粒子の進行方向となす角を θ
⇒ cosθ = c/n

Case 大気: n ≈ 1.0003 → θ ≈ 1度 ⇒ 殆ど粒子と同じ方向に放出される

γ線等が大気中で起こすシャワー中の粒子も殆ど元の粒子の方向に走る
⇒ チェレンコフ光観測からもとの粒子の方向を知ることができる

反跳核 recoil neucleus: 中性子-原子核衝突時に相手原子核軽いと衝突された原子核は飛ばされ周りの物質を強く電離させた核

↔ 相手が重いと相手に余りエネルギー与えず自分が飛ばされ方向を変えるだけ

時間とは何か(相対性理論より)
時空 spacetimeと物質 matterの運動

時間: 外から与えられたものではなく研究対象 = 時間の進み方は運動状態により決まる → 時間は変化
質量を持ったものとその質量に力学的エネルギーを持つ
F = (mc2)2 + cp2, c: 光の速さ

重力波 gravitational wave (重力波 gvavity - = 流体力学): 時空曲率の時間変動が波動とし光速で伝播する現象

統一場理論 unified filed theory


= 統一理論 unified force theory: 統一の力(4つの力) universal force
= 万物の理論 → [候補] 超弦理論(超紐理論)
Newton: 天体の力と地上の力を万有引力として統一 = 重力場
Maxwell: 電気力と磁気力を電磁気力として統一 = 電磁場
Einstein: 重力場と電磁場は同じ空間の性質として統一 = 統一場

_______ 力の種類__力の伝達粒子__力の大きさ(目安)
_______ 強い力____グルオンgluon_____1
電弱力__電磁気力__光子____________10-2
__|_____弱い力____W, Zボソン_______10-5
__|_____重力_____ 重力子__________10-40

  • 強い力: ハドロン/核融合/太陽エネルギー
  • 電磁気力: 分子, 原子/エレクトロニクス/放射光/オーロラ
  • 弱い力: 中性子崩壊/原子核崩壊/ニュートリノ/地熱
  • 重力: 万有引力/銀河系/ブラックホール/渦巻星雲
1. 重力 gravity
全素粒子に引力(万有引力)として働く = マクロ世界支配
重力子(グラビトン) graviton: 質量なし → 重力子の交換で伝播 (重力 = 重力子の交換) → 無限遠に届く
E = mc2 (重力 ∝ 質量, 質量 = エネルギー) → 重力は全粒子に働く

素粒子質量は非常に小さく、加速器で到達できるエネルギーでは素粒子間重力は無視できる
ビッグバンによる宇宙創成直後のような超々高エネルギーでは重要

2. 電磁力(電磁気力) electromagnetic force
日常経験する重力以外の全ての力は電磁気力

Ex. 電子と原子核を結びつけ原子を作る力、原子同士を結びつけ分子を作る力

光子 photon: 質量なし → (電磁気力 = 光子の交換) → 無限遠に届く
電磁気力 ∝ 電荷

電荷を持った粒子: 光子(仮想光子)をお手玉しながら走る = 電荷粒子は光子の衣をまとう
電子が電磁石等で急に向きを変えられると、光子の衣が引きちぎられ飛び出す = 放射光

3. 弱い力 weak force
短距離間でのみ働く。通常、電磁気力より遥かに弱い → 全クォーク・レプトンに働く
原子核β崩壊、中性子、π中間子等の粒子崩壊の力 = ミクロの世界で重要
弱い力を媒介する力の粒子: W, Z粒子 = 大きな質量

→ 弱い力 = W, Z粒子の交換

結合定数は電磁気力と同程度/力が届く距離が非常に短い = 力の見かけの強さが弱い → 日常感じない

弱い相互作用 weak interaction (核に働く弱い相互作用weak nuclear interactions)

2 + 3 = 電弱力 ⇒ 電弱理論 electroweak theory

ボース粒子(ボソン)Bose particle, or boson: ボース統計に従う粒子
W, Z粒子: 質量を持たないゲージ粒子 gauge particle → 真空中のヒッグス場との相互作用により質量を持つ

ヒッグス場との相互作用なければ、これらの力の粒子の運ぶ力は元々は同じ
⇒ 光子の伝える電磁気力と、WやZが伝える弱い力は電弱力として統一

W粒子(Wボソン) W± particle, W-particle (W-boson): ウイークボソンweak boson

4. 強い力 strong force
電磁気力の100倍程の大きさを持つ最も強い力
強い相互作用 strong interaction (核に働く強い相互作用 strong nuclear interaction)
強い力: 全カラー荷を持つ素粒子に働く = グルオンの交換

クォークを結びつけ、陽子(p)や中性子(n)を作り、また陽子同士の間に働く電気的な斥力に打ち勝ち、中性子と共に原子核を作る

強い力 ∝ カラー荷: クォークのカラー荷 = 赤青緑3原色(仮想)

強い力を媒介する力の粒子グルオンは白を除く色の組合せ: 3 (赤・青・緑) × 3 (反赤・反青・反緑) - 1(白) = 8 → 8種類: いずれも質量を持たない
グルオン自体がカラーを持ちグルオンをお手玉するので、力は距離が離れるほど強くなり、核子(陽子・中性子)の大きさ程度以上の距離になると全体として白色状態でしか安定存在できない(カラーの閉じこめ)

⇒ 強い力の到達距離は、グルオンが質量を持たないにも関わらず短く、日常感じることはない

構造主義 (structuralism)


1)言語の恣意性と差異化

ソシュール Ferdinand de Saussure1857-1913, 仏。言語学
言語は時代によって変化 ↔ 言語が言語である限り不変で共通した構造存在

→ それまでの言語学は言語の歴史的変化(通時態)のみ考えた
歴史性考慮せず言語一般に共通する構造(共時態)を取り出そうとする

言語には客観的に実在するものがあり、それに名前を付けているだけのもの(名称目録観)ではない

Ex. 英語: 年上・年下区別をせず"brother"と表現 → 日本語: 年功序列思想浸透し「兄」「弟」と区別
Ex. 日本語: 「氷」 ↔ エスキモー: 氷は日常生活で重要 → 状態により様々な名前を与え区別

→ 明瞭な対象物に名前を与えるのではなく、名前を付け世界からそのものを「区別(差異化)」
= 言語の恣意性: 区別の仕方は言語体系により様々であり絶対的決まりなし
言語発音も「区別」だけ存在 – この「区別」もその言語体系によって変化 = 「恣意的」

Ex. 日本語: rとlの発音区別しない ↔ 英語: 区別しないと別の意味になることがある (rice, lice)

言語(記号、シーニュ): 結びついて始めて言語は言語として機能 = やはり「恣意的」

= 「シニフィエ(signifie意味内容、所記)」: それが指す意味内容
+ 「シニフィアン(signifiant記号表現、能記)」: その発音

「リンゴ」というシニフィアンが例のあの果物を指し示すのは偶然であり、英語ならば"apple"という。時代によって同じ言葉が別の概念を指し示すこともある。言語とその対象の結びつきは恣意的で、言語の指示対象(と言語の発音自体も)は「これでもなく、あれでもないもの」というような「差異」でしか表現できない

2) 音韻論

言語の成り立つ「音」の法則を研究 – ソシュールによる言語の「差異化」(と恣意性)から発達
音素: 人が単語を発声する時にその単語を成り立たせる最小単位となる音 → 音韻論の重要な鍵

Ex. 日本語: 「リンゴ」 → 音素は「リ」と「ン」と「ゴ」

発音者により音の周波数と長さが違う → 音素は物理学的に定義できなかった。ここでソシュールの思想が活かされる。即ち、音素も「差異化」でしか認識できない。この音素は個々の言語体系により「恣意的」である
音素研究 (Jacobson): 音素 = 個々の言語体系により異なる → 個々の音素を差異化する「対立軸」は共通

Ex. pとbの違い: 「無声音」「有声音」の2項対立 → 全音素の差異化は「2項対立」

音素を差異化する際の弁別特性を12対見つけた(「母音・非母音」「鼻音・非鼻音」等)
重要な対立項や、人が初めに話せる音を考え、彼は「母音の三角形」と「子音の三角形」を見出した

triangle
図. 子音の三角形

ヤコーブソン: 人が初めに話せる音は、母音はa, i, u、子音はp, t, k → 音素を区別する2項対立は,「密」と「疎」,「鋭」と「鈍」の2組

Ex. "p/t"は「鈍/鋭」で区別され、この中間に"k"は位置する。更に、p(or t)/kの区別は「疎/密」でなされ、pとtは同程度に「疎」である。「母音の三角形」も同様である

3) 構造主義の発展

a) 機能主義人類学
歴史主義 (伝播主義) (ソシュール登場までの言語学): 言語がその歴史における変化等を研究する歴史主義

進化論の影響: 言語学や人類学に見られ、同一のある習慣とか文化が複数の場所で見つかると、伝播経路や、原住民社会と西欧近代社会の比較が行われた。Ex. フレイザー『金枝篇』

機能主義人類学: ある習慣なり何なりが、その社会においてどのような役に立つのかを重視

現地調査(フィールド・ワーク)を重視 - ソシュール: 歴史主義を捨て言語の「共時態」を重視
問題: 多くの社会に「インセスト・タブー」(近親相姦禁忌)が見られる。近親相姦は遺伝的悪影響を与えるため社会は滅び、「インセスト・タブー」をもつ集団が生き残ったという適者生存主義的考え方で説明
→ 父方従兄弟は禁止で母方従兄弟は禁止しない習慣、複雑な婚姻規則社会の存在は説明できない

b) 構造主義
Claude Levi-Strauss 1908-1992, 仏, 人類学 – 機能主義だけでは全てを説明できない
モース M., 仏, 人類学: ニューギニア島付近の風習「クラ交換」に興味

ある部族がその部族の「宝物」を別部族に贈る → 贈られた部族はまた別部族に贈物
→ その贈り物が「価値ある」宝物だからか。「価値」はどのように決まるか
→ 「価値」は、そのものにあるのではなく「交換される」ことで生み出される

Ex. 「近代」社会貨幣: 貨幣そのものに価値がないが、物と交換できる事実が貨幣価値を備える

→ モースは社会を「交換のシステム」という観点で見直す = このシステムを「全体的社会的給付」という

レヴィ=ストロース: モースの「贈与論」の観点から、「未開」社会における婚姻を見直す

同親族内結婚 = 他グループに女性を贈与できず交換物価値がなくなる → インセスト・タブー発生

Ex. 女性を「贈物」と捉えると、婚姻は女性の「交換」に対応

親族問題: ヤコーブソンの「二項対立」原理を用いる

Ex. 女性を男性が接近することが出来る他の婚姻グループの女性(妻Wife 略語W)と男性が接近できない同一婚姻グループである女性(姉妹: 略語は息子Son と区別するためZ)に差異化

→ どこまでを「妻」、「姉妹」と見るかは社会により異なり「恣意的」だが、「W/Z」という対立自体は普遍的
これらは、その社会に住む人々が意識したものでも自然法則的でもなく、「無意識に」差異化を行う

c) 神話学
レヴィ=ストロース: 人間精神の隠れた「構造」を知るため親族研究から人間精神産物の「神話」に興味移す

注目したのは神話の「筋」ではなく、その神話を構成する「要素」
一見荒唐無稽な神話、他部族間で類似した筋、結末逆転する神話も、表層にとらわれず「構造」を見る
→ 共通部分存在
「テキスト」の意味合: テキストとは何か言いたいこと、「筋」があってそれを読み取るのが読者の役割

→ 構造主義ではテキストを「分解、解体」し、その底に流れる無意識の「構造」を読み取ろうとする

構造抽出法に数学利用(神話を「要素」に分解するアイデアはヤコーブソンの音韻論からだが、その要素が「変換群」によって置換されて様々なバリアントが出来上がると考えた)
→ 西洋人が「未開」と信じていた社会の人々が既に(無意識でも)西洋現代数学を「知っていた」

→ 数学・自然科学等「客観的真実」発見手段とされた学問も「制度」であることが構造主義から指摘された

Ex. 非ユークリッド幾何学: 「ユークリッド幾何学」で「自明」な「公理」を別公理で置き換えても矛盾しない
「公理」は客観的真実ではなく「決めた」約束事なのである

d) 近代的世界観崩壊
レヴィ=ストロースの親族研究や神話学(ミトロジーク)は「理性重視」、「歴史進歩主義」的思想に衝撃を与えた

→ ヘーゲル・マルクス: 人間の理性は歴史が進むにつれ「進化」
↔ 近代西洋社会と彼らが「未開」と信じた社会との間に共通・普遍「構造」 → 時代を通じ「不変」で、しかも人間の主体的ではなく集合的「無意識」による産物

サルトル: 人間実存の本質 = 「自由」 – 人間行動は個々の責任によって決定しなければならない

人間はその「行動」によって「世界に投げ入れられた存在(被投性)」である自らの存在を新たな可能性に「自らを投げ入れる(企投性)」ことで、それを乗り越え新たな存在へと規定できる
「行動」とはサルトルには「歴史への参加(アンガージュマン)」であった(マルクス主義的歴史観が前提)

サルトル-レヴィ=ストロース論争: 平行線をたどり物別れ – 西洋近代的世界観崩壊?

複雑システム科学


Def. 境界条件 boundary condition: 境界に課される条件

Ex. 周期的境界条件、ディリクレ境界条件(固定端)、ノイマン境界条件(自由端)

自己組織系へのアプローチ

1968 Polanyi Michel: 二重制御理論

= 生物機構は機械と同じであり二重制御の元で働く
1. 物理化学法則による制御
2. 境界条件 boundary conditionによる制御(構造、システムデザイン)
1/2は互いに独立

拡大二重制御理論 (仮説)
複雑構造 (Ex. タンパク質)
↑→ 物理化学的制御(物質過程) (Ex. 自由エネルギー最小則 = 熱力学的法則)
↑→ 情報的制御(生命過程) (Ex. アミノ酸配列)
単純構造 (Ex. アミノ酸)
→ 階層構造: ニワトリが先か卵が先か。個体発生は系統発生を繰り返す
1971 Eigen Manfred: アイゲンの進化方程式

自己触媒を含む化学反応ネットワークの中から情報の根源である遺伝コードが生まれる

→ 自己複製系の確立と情報生成は等価

自己複製系誕生は"必然"

Ex. アイゲン(進化方程式)、伏見(進化分子工学)

自己複製系誕生は"偶然"

Ex. モノー J、永山国昭

[ 環境医学 | 環境汚染 ]

環境科学 (environmental science)


理念

  1. 人間生活の復権学: 生活の日常レベルでの問題意識涵養に立脚(井下田 1982)
    1. 環境質充足のための諸方策を考察
    2. 健康性・快適性・安全性・利便性等に横溢した地域生活環境の実現・維持を図る
  2. 人間の関わる環境の維持・改善に関する学問体系(天野 1982)
    1), 2)共に環境を主とし人間を傍らで見ている
  3. 環境科学に関する諸見解
    1. 人間の理性と技術の活動領域に関する科学(ビロンツオ & ハリトノーバ 1972)
      → 自然保護学提唱: 自然環境保護に力点
    2. 人間中心論 → 人間の理性と技術を自然に向ける力を考慮(沼田 1974) → 人間生態学 human ecology
      人間に限定してもよい → 結局人間に帰結するから
    3. 人間生存と環境(問題)の捕捉と調和のとれた解決法を見出す学問
      → 妥協か犠牲か、完全な解決策があるか → 単一学問分野で賄いきれない → 学際的研究
    4. 吉良竜夫の要望(1974)

      1) 学際性
      2) 明確な目的意識 ex. 人間生活復権のための学問
      3) 予測性 → 数量化・合理性の要求

  4. 現在考慮されつつあるもの
    1. 生命哲学bioethics: 人間生活の復権 (ポター 1974)
      人間の生存と生活の質を高め → "どう知識を使うか"という知識を与える新しい英知の必要性
    2. 生命倫理観: bioethicsを基礎とした
      1) 学際性
      2) 目的意識
      3) 予測性の確立
    3. 環境科学 = 生態学(または各専門分野) + 哲学(生命倫理等) + 実学(応用科学)
      科学の応用(中岡 1979)

1) 「+」と「-」の応用がつきまとう
2) 問題解決 → 新テーマ発生

目標

良好な生活環境維持・創造 = 健康性・安全性・快適性・利便性 + 自然(環境)の充足

環境科学の3つの柱

  1. 破壊や利用方法への反省 = 比較環境科学史、比較自然保護史
    Ex. 風土・社会体制・文化・信仰
  2. 現在の環境利用のあり方に対する批判と認識: 批判: 効力・実践。認識 → 事実とは何か
  3. 未来像: 目的意識と予測性
    Ex. 自然を残す意義

    a) 同時代のために
    b) 世代を越えた未来のために

予防原則: 因果関係に科学的不確実性存在 → 予防的な行動を積極的に採用する政策的立場

Ex. BSE 問題に対するEU 諸国の措置
90 年代以降、国際的に予防原則受け入れ → 京都議定書に対するブッシュ政権は潮流に反し批判される

環境認識

環境 = 自然: 古来の認識(environment is nature: aminism) → 文化導入 Ex. ルネッサンス「自然に帰れ」
西欧・合理・キリスト: 自然に対する人間の責任(Passmore 1974)

人と自然を対立したものと捉える → 公害・環境問題

日本・非合理・仏教: 日本思想文化(三枝博音) - 自然観の確立が遅れている

日本人は自然を大切にする民俗か否か

西欧と東欧の接点を見出すことが大切なのではないか
→ 環境再認識: 第二次大戦以後 - 汚染・公害等発生 → 人に起因したことが環境を通じ人に戻る

地球環境科学 (environmental earth science)


地球環境: スケール大きく自然現象も複雑であり実験困難 → シュミレーションの意義大
Ex. ヒートアイランド heat island = general system model → 原因: 熱汚染 thermal pollution
    ↓から へ→ 自然システム   生物システム  人類システム
    自然        陸海空サイクル 光合成・呼吸  資源・災害
    生物        分解・呼吸     食物連鎖      食糧
    人類        廃棄           スペース圧迫  経済サイクル
                             (都市化)

地球的規模の環境問題

  1. 地球温暖化
  2. 鉛汚染: 重金属公害, ローマ文化の衰退
  3. 酸性雨: 大気汚染, 灌漑農耕, メソポタミア文明滅亡
  4. 放射能汚染: 原子力, 核戦争, 現代文明
  5. オゾンホールozone hole
  6. 生物多様性減少 → 地球上: 数百万種の生物生息
    熱帯林: 40-50%の生物種生息 - 20世紀初 = 約20億haの湿潤熱帯域を覆うが1世紀間に約50%消失
    サンゴ礁 = 「海の森」: 海洋の0.2%の面積を占める、海の魚種の30-40%生息

    既に約10-15%のサンゴ礁が人為的破壊 → 残されたサンゴ礁も海洋汚染等により縮小
    地球温暖化による海水温上昇が続けば、近い将来、地球上のサンゴ礁が大打撃をうける

西暦2000年の地球 (既に過ぎたが)
人口, 食糧, 森林, 砂漠化, 動植物減少, エネルギー, 化学物質, 大気・気象, 海洋, 水, 土壌
「宇宙船地球号」破綻 → 現に生活している場所の問題を解決せず、地球問題解決をできるはずがない
Ex. 環境変動予測 environmental perception → 砂漠化防止

砂漠化防止政策(国連、UNESCO等の援助): 土木技術・緑化事業
都市化に伴う砂漠化(乾燥化)

(理論と呼びたい人もいるがダメ)

ガイア仮説 Gaia hypothesis

Gaia, Gr. 大地の女神
1979 ラブロック J (英, 生物物理学・医学): 地球は、自己調節能力を持った1つの生命体(有機体) → 全体論

地球 = 20数%の酸素を含む大気 → 維持 ↔ 火星や金星など太陽系の他惑星と異なる
+ 気候変動 (Ex. 巨大隕石墜落・氷河期-間氷河期) + 人為環境破壊
→ 地球は大きく変わっていない → 地球の大きな生命の流れに沿った判断必要

→ [思想] ディープエコロジー deep ecology
→ [科学] 地球生理学(地球システム科学)

反論: 循環論法 → 地球環境が生物に対し好意的なのはガイアの意志

Dwakins R: 生態系そのものが自らの生存維持に、他の生態系の生存を補助することは遺伝子の仕組みからは考えられない

ディープエコロジー deep ecology
1973 アルネ・ネス (スウェーデン)

思想: 原生自然に触れ、環境問題をより精神的・内面的に考え、自然の見方や振る舞いを探求
↔ 批判: シャロウ・エコロジー = 環境問題を具体的・実践的レベルのみ解決、人間に有用な自然のみ保護

地球規模環境問題は、現在の社会システムと文明が生みだした
→ 根本的解決には、現在の社会システムと文明それ自体を変革する必要

個々人が自らの「価値観」を改め、意識変革し、ライフスタイルを改め、新生活スタイルを形成する必要

地球環境保全

地球環境問題解決 = 国際社会共同作業必要

1980年代終頃: 国際連合や米国議会で地球環境問題が取り上げられる

地球環境保全や再生をめざす活動 → 世界的広がり

日本: 身近な里山の自然を守ろうという運動
東南アジア: 日本等技術・資金援助 → 熱帯林・マングローブ林再生の試み。現地の人には森林は生活の場であり、地球環境問題の視点に立つ取り組みは理解されにくいが、植林・造林の成果は多い
中国内陸域: 砂漠化防止の努力が国際的協力のもと進められる

環境修復技術: (化学物質に頼らず)植物やバクテリア等の生物を利用し環境蓄積有害物質を除去する技術

PCB・ダイオキシン等の分解微生物 → バイオテクノロジー用い分解効率上げる研究
生物体内代謝系をモデルに、環境汚染原因となる有害二次産物を発生させないクリーンな化学反応系開発
化石燃料や原子力に代わるエネルギー源の研究・開発
科学技術は、地球環境保全の方向へ大きく舵を切り始めている
情報技術は、国際社会の緊密な連携をはかる上で重要な役割
分子生物学発展を中心に「21世紀は生物学の世紀」と言われ、生物学も地球環境保全に貢献する期待

地球環境計画と環境アセスメント(テクノロジアセスメントを含む)

National Environmental Policy Act
Environmental Impact Assessment, Environmental Impact Statement(米国、スウェーデン)
川崎市、環境影響評価条例

環境ガバナンス(環境統治) environmental governance: 社会が環境を管理する能力や仕組み

地球環境ガバナンス: 地球社会が環境を管理する能力やその仕組み
国際環境ガバナンス: 国際社会が環境を管理する能力やその仕組み
→ [過去] 法制度を中心に形成  [現在] グローバル化進み、必ずしもそうとは限らならない
[形態]
中央集権的社会における公的権威によるガバナンス
中心的権威の存在しない分権的社会におけるガバナンス
[主体] 国家、政府、国際機関、地方自治体、市民、女性、先住民、若者、市民団体、企業、学会等
[目標] 地球環境保全実現 → 制度通じ各主体の積極的関わり合いと交流により環境ガバナンス具現化

地球温暖化

地球温暖化総論
地球温暖化生態学特論
気候変動枠組条約 (国際会議)
メタンと水素の利用価値
メタン = 燃料利用価値 ↔ 水素 = 燃料 + 物質利用価値(期待)
CH4 + 2O2 → CO2 (warming gas) + 2H2O ⇔ 2H2 + O2 → 2H2O (clean + 石油の4倍の熱)
水素: 21世紀の理想エネルギーと期待されるメタンより遥かに価値の高いガス

紫外線 (オゾンホール)

オゾン層破壊と紫外線影響評価総論
オゾン層

科学方法論 (Scientific method)


方法 method

metahodos (G) 或ものに到達する道程 → 自然認識「如何に在るかbeing (存在)」
事実判断 fact decision → 因果関係 causality → 価値判断 value-judgment (哲学)
Mill JS (1806-1873) 斉一性 uniformity: 自然は同じ事情(基礎条件postulate)のもとでは同じ現象を起こす
帰納法による法則(因果関係)成立の前提
科学的説明
Braithwaite 1953
証明 demonstration, 演示 illustration, demonstration → 認識論 epistemology
第1段階: 経験的事実fを証明する

gであるからという説明 → 因果的説明
gのために、という説明 → 目的論的説明(機能的説明)

第2段階: 法則lの成り立つ理由を説明する

法則L1, L2など(より一般的な法則の場合が多い)で説明する

科学的方法 (scientific method)


1. 事実

→ データ収集
A. 観察 observation
現象 phenomena を感覚器官により正確に経験する
B. 実験 experiment
制御実験 controlled experiment: 現象が複雑な因子・条件下で起こる → 因子を単純化(か除去)

操作変数(操作可能変数) manipulated variable Ex. 温度一定下で光条件を変え植物成長測定
自然には起きない現象、或は容易に観察できない現象を、任意な処・時で起こす Ex. Mendelの実験
観察に不便な現象を見やすくし実験 Ex. 精密測定機器による微量分析

思考実験 thought experiment Ex. コンピュータ

2. 概括(一般化) generalization

→ 帰納法: 検証 verification に耐えうるものでなければならない
a) (科学的)法則 scientific law (natural law)
個別法則 < 一般法則
法則 → 因果性(因果律 law of causality)

実験的に得た法則 → 定式化 Ex. 質量作用の法則基礎, Hessの法則
相加法 additive method: E = Ea + Eb + ···
相乗法 multiplier method: E = Ea × Eb × ···

b) 共通事項表記(科学的表記) scientific notation

3. 予測(予知) prediction

普遍的 universal, 必然的 necessary
導出量(推定量) derived quantity: 結論を論理的に導き出した量
Ex. ハレー彗星(Halley Edmund 1656-1742): 1531, 1607, 1682年出現彗星同一 → 1758年回帰と予測

仮説 (hypothesis)


作業仮説 working hypothesis: 因果関係について立てられる仮定
→ 推論に基づく → 観察(結果)と解釈、推論と仮説は区別される
説 theory: 仮説に基づく学説 → 検証可能性がある
法則 law (理論 theory): 検証に耐えたもの(Popper 1965)
直感 intuition (≈ ひらめき): 仮説・理論誕生に重要な要因であるが、思考としての直感過程は不明の点多
概念モデル mental model: 対象を直接知れないとき、間接的方法で情報を集め、解釈し組み立てられたモデル

形式モデル: 概念モデルの中で図式化、数式化されたもの Ex. 原子模型


研究対象 ___ モデル
基本的性質A, B, C···がある = それに対応する性質A', B', C' ··· を持つものをモデルに選ぶ
a', b', c'の性質があるとして、それを仮説とする → a, b, c ···の性質が知られている


AとBの関係に対応する関係が = A'とB'の間に成り立つ
a'とb'の間に成り立つと考える → aとbの間の関係が


図. モデルによる類推(類比, アナロジー): 上下両様の表し方がある

仮説検証

  1. 演繹された結論が実現されない → その仮説は正しくないか、少なくともそのままでは正しくない
  2. 演繹された結論が実現された → その仮説は正しいものでありうる
  3. ある仮説が正しいなら、それから演繹された結論は全て実現されなければならない。しかし仮説が正しくないとしても、その仮説から演繹された結論のどれかが正しいことはありうる

(八杉 1979)

哲学 (philosophy)


  1. 宇宙や人生の根本問題を理性的な思弁により突き止めようとする学問 Ex. スコラ哲学
    哲理 philosophical principles: 哲学上の学理。特に人生・世界の本質を見通した道理
  2. 自分自身の経験から築き上げた人生観(世界観) Ex. 人生哲学

自然科学史(古代)

ギリシア哲学

→ 唯物的で個人主義的な3(4)学派誕生
1) キュニコス学派
→ ストア派に発展
善 ≠ 外的 → 善 = 魂の内部に存在 → ストア学派倫理学の原理
2) ストア学派 Stoicism
ヘレニズム時代に創設された古代ギリシア哲学学派
起源: ソクラテス弟子アンティステネス創設のキュニコス学派
第1期(BC300-BC200): BC300年頃キプロスのゼノンによりアテネで創設
キュニコス学派のソクラテスに学ぶゼノンが彩色柱廊で知られたストア(柱廊)に学校開設したのが始まり
(学派名称も同由来)
第2代学頭クレアンテス著「ゼウス賛歌」断片現存: 最高神は全能唯一神にして道徳的統治者と記述
クレアンテス後継者はクリュシッポスで、これら3人が代表者
第2期(BC200-BC50): ストア学派哲学普及し、ローマにも知られる
パナイティオス: ストア学派を本格的にローマに伝えた
ポセイドニオス: パナイティオスの弟子。ローマの有名な演説家キケロの教師
第3期(ローマ時代)
キリスト教がローマ帝国国教になった後も勢力を持ち続け影響はルネサンス期まで及ぶ

共和制末期: 小カトーは優れたストア哲学者
帝政期: ローマの3大ストア哲学者 = セネカ、エピクテトス、皇帝マルクス・アウレリウス

思想
ヘレニズム期の他学派同様、倫理学に強い関心 → 幸福が人々の最大関心事
特徴: 倫理学を固めるため、論理学・自然学の理論開拓 → 概念・判断・推論の理論としての論理学はストア学派が骨格形成 Ex. 仮言三段論法発見
自然学
世界は物質からなるが、物質そのものは受動的で、これと別に世界を動かし世界に秩序を与える能動的原理があり(ロゴス)、神の理性であると共に、ある種の微細な物質とも考えられ、「息」「火」とも呼ばれ、ヘラクレイトスが宇宙の根源としたものにあたる
魂 = ロゴスの現れ
→ ロゴスに従い生きる = 神が定めた世界(自然)秩序に従う(人間の務め)
「自然に従って生きる」は、自然法思想展開で決定的となりローマ法に甚大な影響を与えた
魂の内的状態 = 思慮(自制心)
→ 日常生活で我々の心をかき乱すものは情念や欲求であって、こうしたものから解放されて不動心(アパテイア)を得るために必要なものが思慮や自制心である
コスモポリタニズム
ストア学派1特徴
どの人間も唯一の普遍的な神の現れ → 人間同士の付き合い → 社会的地位、貧富、民族の違い等外的なものは全く意味をもたず、万人は等しくコスモス(世界)市民である
→ キリスト教誕生以前に、全人類は生まれつき平等であり、兄弟のように愛しあわねばならないと考えた

→ ギリシア哲学(中近世)

形而上学 metaphysics = 個々現象を先見的原理で説明し実在realityの真相を得る
3) エピクロス学派(エピクロス)
快楽主義 ↔ 自制重んじるストア学派と対立(stoic = 「禁欲的」の意味加わる)
4) 懐疑主義

スコラ哲学 (Scholasticism) philosophia scholastica


キリスト教に従うギリシア哲学 – 数学・経験重視しない
トマス・アクィナス神学: キリスト教啓示の超自然的内容を自然的人間理性(アリストテレス哲学と科学)から理解しようとした哲学的・神学的運動
→ スコラ学: 「神は唯一全能創造主」、「魂不滅」という信念
スコラ学という用語

1) この時代の思想に特有な学習への精神や方法だとか、他の時代の同じような精神や態度

2) スコラ学者 = 修道院・大聖堂付属学院長(初期)  学院が大学化し学院・大学で哲学・神学を教える人(後)

ヨーロッパのキリスト教修道院付属の学院や大学で、11世紀半-15世紀半まで支配的
最終的理想 = ギリシア・ローマの自然的知識とキリスト教の宗教的知恵を、秩序だてた体系に統合すること

目的: 哲学・神学で様々な教義を広く展開 → 運動全体を統一要因 = 共通の目的・態度・方法
新事実発見ではなくギリシア的理性とキリスト教の啓示により既に別々に獲得された知識を統合
→ 統合意識が、ルネサンス以降の近代思想からスコラ学を区別する特徴

神学者・哲学者: スコラ学者共通態度 → 理性と啓示の間には根本的な調和が存在するという確信

理性と啓示は神を知の源  真理は神の主要属性の1つ  理性と啓示間で神が自己矛盾しえない
啓示と理性の間に対立  理性を誤って使用したか、啓示という語を不正確に解釈したか
スコラ学者達は、啓示は神の直接の教えとし、自然的理性より程度の高い真理と確実性を啓示に認める

→ 宗教的信仰と哲学的理性の間のみかけ上の争いでは、信仰が優勢な審判者
= 神学者の判定は哲学者の判定をしりぞけた
13世紀初頭: 哲学領域内では哲学は神学から独立と強調 → 哲学は神学者達が啓示を理解し説明する道具とされ、スコラ学の時代を通じ哲学は「神学の婢」と呼ばれた

イブン・ルシュド(アラビア哲学者): 二重真理説(イスラム教) ↔ スコラ学の態度と対照

哲学もイスラム神学も真理に近づける → 真理に到達するのは哲学のみ
→ 神学真理 = 大衆のため → 哲学のみが達しうる本物の真理の不完全な像的表現
哲学的真理は、言葉上はイスラム神学の教えと矛盾さえある

信仰と理性の調和 → 信仰と理性の能力の明確な適用範囲と権能の規定を試みた

初期 Ex. 聖職者アンセルムス(伊): 2能力を明確に区別しない

理性が啓示を証明できると自惚れてもいない

最盛期 Ex. 神学者トマス・アクィナス(伊): 理性と啓示の均衡を完成
トマス以降 Ex. 神学者ドゥンス・スコトゥス(スコットランド, 先駆): 理性により証明可能な真理領域を制限

哲学で証明された教義は、信仰に基づいてのみ受け入れた
理由: アリストテレス著「Organon」で要求した科学的証明を、以前より厳密に用いた
科学的証明要求は厳格(Ex. アリストテレス = 数学分野以外では殆どこの要求を満たさない) →
初期ルネサンスや、ルター等の宗教改革者に見られる人間の自然的理性と哲学への自信喪失招く

古典重視: 哲学・神学でいわゆる大家を重んじた点も、スコラ学者に共通する態度

大家 = ギリシア、ローマの偉大な哲学者 + 初期の教父

アリストテレス = 哲学第一人者 → 「哲学者」 = アリストテレス
初期キリスト教聖職者(神学者)アウグスティヌスが、聖書と教会の公会議を除けば神学第1権威
大抵のスコラ学者は、アリストテレス経験科学見解を無批判に受け入れ、その権威に執着 → スコラ学の弱点 → ルネサンス期以後の科学者達がスコラ学を軽蔑拒絶する要因

中世スコラ学: 古代著者の研究のみを通じ考え著述するよう教育される(古代文化思想は中世より豊か)
→ [批判] 思想成熟し独創的哲学的著作も生まれ独自に思想形成されても、見解に威信を与えるため古典引用止めず、古典を編集反復しただけ(トマスやスコトゥス等も古代テキストに従順依存的)
時に古代テキストと自分の立場を調和させようと古代思想家達の意図にそぐわぬ解釈
→ 注釈者本人の意見表明前後に、単なる文体上の装飾とし古典を出したり、引用で注釈者見解は過去からのもので新奇でないと思わせる効果 → スコラ学者は慎重で、思想の独創性を求めない

方法・注釈

1) アリストテレスの論理学と哲学用語を用い教育、論証、議論
2) 古典を教えるに当って承認された権威者による注釈を用いる

哲学: 古典は大抵アリストテレス / 神学: 主なテキスト = 聖書 + 「命題論集」

命題論集: 12世紀、神学者ペトロス・ロンバルドゥス(伊)がまとめた、初期教父達の神学問題意見集

初期スコラ学者は、注釈テキストに従う
→ 批判的読解により思考高まるにつれ、テキストで十分解明されない論点に対し補足的注釈を提出
13c初: 教授者自身の個人的思想を入れた補足的注釈が、注釈全体の最大かつ最重要な部分となる → テキストの逐語的説明は、それぞれの注釈中の単なる断片と化する

公開討論: 論争されている問題の注釈と、公開討論による論争の技術は深く結びつく

中世大学教授: 教授団と学生の前で挑戦者全員の攻撃から自分の教えを弁護 – 1年に数回課した
→ アリストテレス論理学形式: 攻撃・防御両方で用いる
13 c: 哲学と神学の進歩を促し、検証し、伝達するのに適した教育手段となった
> 14 c半: 活力衰え硬直した形式主義 → 思想の実質的内容論ぜず。論理的細別等些細な点に関心
討論形式堕落 → ルネサンス期以後悪評 → 近代多思想家の判断: 衒学的論理的形式主義

11-12 c: 代表的スコラ学者

アンセルムス
アベラール
ロスケリヌス: 唯名論者
マイモニデス(ユダヤ思想家, 哲学者・物理学者でラビ): キリスト教スコラ学者と似た方法でアリストテレス哲学とユダヤ教での神の啓示を調和させようとする

13 c (スコラ学全盛期)

ドミニコ会: トマス・アクィナス
ドイツの哲学者: アルベルトゥス・マグヌス
Becon, Roger (1214-1294), 英。哲学・神学(フランシスコ会修道士)

実験的方法重視 → 経験科学 scientia experimentalis

イタリアの神学者: ナベントゥラ、ドゥンス・スコトゥス
アウグスティヌス主義: ガンのヘンリクス

14 c(スコラ学衰退開始): 唯名論が哲学の有力な学派となる
Occam ,1285(6)-1347(9) 英, スコラ学者(唯名論・哲学・論理学)

スコラ学哲学体系を全面的に攻撃: 自然的理性と哲学の領域はスコラ学者が考えるより制限される
論理的に、信念は哲学や論理で証明できない、と結論 – 異端扱い

オッカムの剃刀(「けちの原理」単純さの原理)

「むやみに実体の数を増やしてはならない」「2つの理論がある時は、真偽を明らかにできる証拠が新たに挙がるまで一番単純な理論を用いよ」 → 思考節約原理 = 「オッカムの剃刀」
Ex. 「石を投げたら地面に落ちる」 → 「地面に落ちるか、上に落ちたり、左に行く」と複雑理論も立つ

切れ味鋭いカミソリで、上に落ちたり左に行く証拠が見つかるまで複雑な理論を削ぎ落とす
オカルトや擬似科学(トンデモ科学)は、このカミソリを使用しないため数え切れない理論共存

16 c: スペイン。ドミニコ会士(ビトリア)とイエズス会士(スアレス)によって短期間ではあるが復活
1879 教皇レオ13世: 大規模にスコラ学再興試みる – 13世紀スコラ学(トマス)体系を時代に即し再考

スコラ体系改革に近代思想の真の功績を結びつけるため
→ 新スコラ学: 現代思想の1潮流。フランス(外交官)のマリタン、フランス哲学史家のジルソン


近世-現代哲学

近代哲学誕生 = 帰納・演繹(ベーコン)
イギリス経験主義哲学
フランス唯物論哲学
ドイツ観念論哲学(カント哲学) → 新カント哲学(西南ドイツ学派、マールブルク学派)
米国実用主義哲学(プラグマティズム)

米国が欧州と区別される独自の思想、文化を持ちたいと願う願望の表現 + ダーウィン進化論
概念や法則の実用性を方法の基準とする

Bruno, Giordano 1548-1600: コペルニクス天動説支持者(火刑)
Bacon, Francis 1561-1626 (Roger Baconとは系譜関係なし)

自然法則を知る手法 = 帰納法 + 実験
実験は確実な経験に到達させる – 魔術から科学へ
「大いなる再興」(6部作の予定だが完結せず)
2部「新機関Novum Organum」(1620) – Organon (Aristoteles)に対抗したもの – 帰納法の表れ
科学 = 史学 + 詩学 + 理学

人間幸福を進める(神に背くものではなく神を敬う道) → 産業の新発展期の考え方代表

技術: 隣人への愛を実現する手段であり神意にかなうもの
人間: 自然を支配し、同胞の幸福のために努力する反面、自然に従う
知識 力であり信頼を置く

Descartes(デカルト) 1596-1650, 仏: 思考の合理性

真実(= 一般原理): 全てを疑い、その後に残る(曖昧でない)明晰で(紛糾していない)判明なもの
我思う、故に我あり → 懐疑主義の表れ
「方法序説」(1637), 生命機械論(機械論・機械原因論)
波動説: 力学的宇宙系(渦動論)提案 → Newtonにより否定

Spinosa 1632-1677: 基本は形而上学的
Locke, J (ロック) 1632-1704, 英

経験主義(懐疑主義) = 近代哲学認識論確立
経験主義: 因果律law of causality → 生得的観念は存在しない – デカルトの主張否定

心: 離生・知識・観念の全てを感覚に基づく経験により獲得 → 因果関係

懐疑主義: 懐疑から出発し認識の本性を分析

Leibniz, Gottfried Wilhelm 1646-1716, 独

哲学・数学、国政・外交等実務でも活躍
モナド論(形而上学説): モナド(単子) = 万物構成する不可分で不滅の実体
1モナドは他モナドと相互作用をもたないが、最高モナドである神に立てられた予定調和を表現している

Hume, David 1711-1776, 英: 経験主義 + 懐疑主義

因果性 = 習慣による期待 Ex. Aが起こると(いつも起こる)Bが起こることを期待する

Bentham, Jeremy 1748-1832, 英

功利主義 utiliarianism = Greatest happiness of the greatest number

Montesquieu 1689-1755, 仏: フランス啓蒙思想
Spinoza Baruch 1632-77, 蘭: 合理主義
Rousseau Jean-Jacques (ルソー) 1712-1778
Kant Immanuel (カント) 1724-1804, 独: ドイツ観念論哲学
Hegel Georg Wilhelm Friedrich 1770-1831, 独

弁証法 観念論(唯心論)→ 唯物論 Marx – Engels

Schopenhauer Arthur (ショーペンハウアー) 1788-1860
Marx K 1818-1883, 独: 弁証法的唯物論
Engels F 1820-1895, 独: 弁証法的唯物論

自然科学世界は弁証法的発展を示す

Lenin V.I. 1870-1924, 露

1909 「唯物論と経済批判」 - マッハ、アベナリウスの思想を批判

Nietzsche Friedrich Wilhelm (ニーチェ) 1844-1900
Windelband W. 1848-1915, 独 / Rickert H. 1863-1936, 独

新カント哲学(西南ドイツ学派)
自然現象 = 再現可能性(反復可能性) → 法則定立学
社会現象 = 一回性(反復不可能性) → 個性記述学(文化科学)

Bergson Henri 1859-1941, 仏 (1927ノーベル文学賞)
Kierkegaard Soeren Aabye (キルケゴール) 1813-55, Denmark
Dewey 1859-1952, 米

プラグマティズム(実用主義) → 概念道具説: 概念も環境への適応活動の道具

Sartre Jean Paul (サルトル) 1905-1980 実存主義

科学哲学 (philosophy of science, s.l.)


1. 科学の哲学 philosophy of science (= s.l.): 科学の本質についての哲学的考察
1662 英国王立学会(Royal Society)設立 → 会員は外国人含む。会誌発行
1666 フランス科学アカデミー
1700 ベルリン科学アカデミー
1724 ロシア科学アカデミー
1928 エルンスト・マッハ協会(初代会長Schlick M. 1882-1936, 独)

ウィーン学団が作った団体
1929 「科学的世界把握」 協会趣意書

協会員の多くがナチスのユダヤ迫害逃れ、米国等国外逃亡

Neurath O. 1882-1945, オーストリア

統一科学提唱 – 全科学は統一言語(物理)で記述できる

2. 科学的哲学 scientific philosophy (s.s.)
科学の立場で基礎づけられた形而上学ではない哲学
= ウィーン学団Vienna Circle: 論理分析や言語分析を用いた科学哲学
Feyerabend, Paul Karl (1924.1.13-1994.2.11, オーストリア生)

通約不可能性(共役不可能性) incommensurability: 異なる理論体系(パラダイム)間に共通の理論的基盤がない時に、理論体系同士の比較を行うことが出来ないという状況のこと
→ 「タブーに挑戦しあらゆる仮説に触れてみよ」

現代経験主義2つのドグマ two dogmas of empiricism
クワイン「経験主義の2つのドグマ」1950
  1. 事実と独立な分析真理と事実に基づく総合真理の基本的分裂の確信
  2. 有意味な言明は直接経験に言及する項の論理的構成に等価であるという還元主義の確信

→ 真理は言語と事実の両方に依存: 言明はその意味の言語全体への依存性から単独での検証不可能
→ 知識・信念: 周辺が経験と接する全体連続的系をなす概念枠組。系を乱さない性向に従いつつ、過去の経験に照らし未来予測する道具として、より感覚的刺激に適合するよう修正する実用主義こそ支持される

意味公準 meaning postulate
「意味公準」: そこに含まれる言葉の意味を決める命題 (カルナップ)

経験主義の2つのドグマ = 分析命題と綜合命題の明確な区別は不可能 → 反論

Ex. 命題「全てのカラスは黒い」 → 綜合的・分析的には、黒くないものをもカラスと呼ぶか、「全てのカラスは黒い」という命題を偽とするか、による
真なら、命題「全てのカラスは黒い」は、「カラス」という言葉の意味を決める → 分析命題

分析と綜合は、意味公準から論理的に導かれるか否か、によって、明確に区別される。

サピア-ウォーフ仮説 Sapir-Whorf hypotheses

ウォーフ「言語、思想、現実性」1956
人間にとって「現実世界」は、その集団の言語習慣上に無意識に構築される = 言語相対主義仮説
→ 異言語は、異世界観を強制する(単に、語彙によるだけではなく、文法構造も強く影響する)
Ex. フォピ・インディアン: 言語に時制を欠く → 時間観念がない

しかし、言語と観念の関係は相互的で動的であり、それほど完全な決定関係ではない

観察なしでの知識 knowledge without observation
アンスコーム「インテンション」1957.8.28
それを告げ知らせるものがなく、何の観察もなしだが、語りえ、それを知っている種類の知識

Ex. 自分の手足の位置は、感じずとも分かる。身体運動のみならず、心的原因mental causeも含まれる
行為から生じるものは観察からの知識 ⇔ 自分の行為は観察なしの知識
→ 「○○しよう」とする: 行為と生じるものは区別されない

静的観想的知識: 事実先行し言葉がそれに一致するよう限定
動的実践的知識: 言葉先行し事実がそれに一致するよう限定
→ 両者の対象の事実は同じもので構わない

矛盾は、観察なしの実践的知識に対し、観想的に言葉に先行し限定する事実を求めた間違いから生じる

理論負荷性 thepry-ladeness: ハンソン「発見のパターン」1958

感覚と解釈は切り離せず、事実認識は理論の投影があって成立
→ 「見える」と「として見る」の区別、感覚し、解釈する、という二重認識説を退ける
xの観察は、xについて予め持つ知識に形成され、xという対象が見えることは、対象が我々の知るxと同じくふるまうだろうことを見ること。事実も、観察だけで得るのではなく、理論負荷的であり負荷的理論ともなる

無所有理論 no-ownership theory: ストローソン(『個体』1959.3)

問題 1) なぜ意識状況が身体の帰属する主体に帰属され、2) なぜ何かの主体に帰属されねばならないか
デカルト派: 1)を、その主体は異なるタイプの実体とし解決 → 後者の問いを逃れえない
ビトゲンシュタインら: 「無所有理論」 → 2)も解決 = 所有権が論理的に移譲可能なものだけが所有しうる

諸体験はある特定身体の状態に因果的に依存するという意味でない限り、何ものにも所有されない
→ 移譲不可能な故に、ある同定された主体に所有されるものとしてしか同定しえないという不整合

M述語/P述語 (M-/P- predicate): ストローソン(『個体』)

M述語: 物体にも適用されうるようなもの Ex. 「60 kgの重さである」「客間である」
P述語: 人物にしか適用されえないもの Ex. 「痛たがる」「笑っている」

人物概念は、両種の述語が適用可能である実体のタイプとし理解される。P述語を帰するのは、他者の運動を行為とし意図により解釈すること、つまり、我々が観察で他者に帰属させるものを、観察なしで自分に帰属させる自己帰属者として他者を見ることによる。P述語が集団にも帰属されるように、個体概念は、P述語の帰属する身体に依存するのではなく、P述語を帰属させられることそのものによる


  • 赤木昭夫. 1986. チェルノブイリの放射能. 岩波ブックレット74, 岩波書店, 東京 71 p.
  • 濱 健夫・三浦千三・小川朋次郎. 1978. 自然科学概論[改訂増補版]. 関東出版社, 東京 pp. 206
  • 香取眞理. 1997. 複雑系を解く確率モデル こんな秩序が自然を操る. 講談社ブルーバックスB1193, 東京. 217 p.
  • Popper KR. 1965. The Logic of scientific discovery. Harper & Row, London pp. 479 (大内・森(訳). 1971-72. 科学的発見の論理(上・下). 恒星社厚生閣, 東京)
  • 高榎 堯. 1985. 核廃棄物 安全に処理する方法はあるのか. 岩波ブックレット44, 岩波書店, 東京 63 p.
  • 田中 一. 1973. 夜空の星はなぜ見える-自然の論理-. 北海道大学図書刊行会
フッター