Top
ヘッダー

(Upload on November 16 2024) [ 日本語 | English ]

Fossil (化石)






Mount Usu / Sarobetsu post-mined peatland
From left: Crater basin in 1986 and 2006. Cottongrass / Daylily

Fossilization (化石化)

the process of becoming a fossil
                                     Organism dies
                          ↙                      ↓                  ↘
         Covered              Decomposed          Destroyed
(sediment, ice, amber, etc.)  (biological factors)    (physical factors)
                  ↓                 ↘             
          Destroyed             Fossilized      ↘
       (physical and                ↓               ↘             ↘
     biological factors)   Destroyed  Stays buried  Discovered
                                    (moved,       (not exposed,         (exposed
                               melted, eroded    not found)           and found)
                                  or crushed)                                     

Fig. Diagram showing the process of fossilization.
Conditions necessary for fossilization
  1. Rapid burial - protected from predation, decomposiiton, etc.
  2. Presense of hard body parts - rare traces of soft tissues
  3. Low oxygen environment - less decomposition by bacteria
索引
Methods of fossilization
  1. Petrifaction (石化)
  2. Carbonization (炭化)
  3. Mold and cast (鋳型)
  4. Preservation (保存) - ice, mummification and amber
  5. Traces (痕跡) - tracks, burrows and coprolites
Fossilization requires embedding in sediment. Contitions of preservation: impressiosn, core, true petrification, and natural cast. Note autochtonous (primary) and allochtonous (secondary) deposits. Synchronous allochtony by transport before fossilzation, and heterochronous allochthony by transport after fossilization.

Paleomycology (古菌類学)


Def. the study of fossil fungi
Phanerozoic (顕生代): a great diversity of fossil fungi

Precambrian (始生代)


In the 1950's laboratory experiments showed that electrical discharges, like lightning, may have caused chemical compounds on the early earth to combine, forming the building blocks for life. Since then, theories for how life began have explored numerous paths. Early in the earth’s evolution the chemicals necessary for life existed in the oceans or atmosphere, but for hundreds of millions of years the Earth was probably lifeless. If lie had evolved, bombardment by asteroids and comets would have vaporized the oceans, sterilizing the planet. Asteroids and comets likely brought organic compounds with them. Heavy bombardment probably ended 3.8 billion years ago. Rocks about this age contain organic carbon, suggesting life arose quickly.
Rocks 3.5 billion years old contain the first fossils of simple (prokaryotic) cells that lack a nucleus. These cells were the only life forms until about 2 billion years ago when (eukaryotic) cells with a nucleus appeared.

Stromatolite (ストロマトライト)
Stromatolite
Archaeozoon acadiense Matthew
Precambrian, Ashburn formation
Saint John, New Brunswick
Collectores: RF Miller 1990;
W Murdoch ca. 1890
(St John Museum, Sept 19 2014)

The most common fossils of the Archaean and Proterozoic Eons are stromatolites, sediment mounds built by cyanobacteria. At 980 million years old, Archaeozoon acadiense is the oldest fossil in New Brunswick. Today stromatolite mounds are rare, found where very salty water limits other organisms from browsing the cyanobacteria. A billion years ago stromatolites were widespread since there were no other organisms to eat them.

[ origin of life ]

Earlier biological type (初期生物型)


Precambrian

Chemical fossil (化学化石): any of various organic compounds found in ancient geological strata ta that appear to be biological in origin and are assumed to indicate that life existed when the rocks were formed.

Archaean strata containing chemical fossils - life existed over 3500 m.y.a, perhaps even as much as 3800 Mya

3100 Mya: degradative products from chlorophyll (Oro et al. 1967)
2000 Mya: fossils of amino acids
1967 Barghoorn: microbe fossils

Collected from Fig Tree Formation in southern Africa
Eobacterium isolatum, 0.75 μm long
Archaeosphaeroides barbertonensis, φ = 20 μm

similar with Cyanophyceae

Eukaryotes (真核生物)

Proterozoic Eon (21 billion years ago, bya) Grypania - tube-shaped fossil

(size > 1 cm) ≠ prokaryotes
appeared by Ediacaran period

Symbiotic theory (共生説)
eukaryotes were evolved by symbiosis - supported by fossil records

Ediacara (or Ediacaran) fauna (エディアカラ動物群)
= Ediacaran biota (formerly Vendian), 635–538.8 mya

characterized by enigmatic tubular and frond-shaped, mostly sessile, organisms

Ediacara

Evolution of algae (藻類の進化)


Aquatic organisms

all the fossils of organisms were aquatic or oceanic before Silurian
Diatoms
fossil records: appeared after Jurassic and insreased in Cretaceous, as well as Dinoflagellates
diatom
Fig. 4. Stratigraphic changes in valve morphology of Stephanodiscus species, which occurred monospecifically. From left to right; valve diameter, open squares (minimum), solid small circles (average) and solid squares (maximum); distribution of initial valve diameter; frequency of vestibule, pore or short tube for mantle strutted process external opening, vestibule in dashed line, pore in dotted line and tube in solid line; spine-bearing valve ratio, broken line showing the exceptionally high values intercalated by S. vestibulis's occurrence; distribution of fascicle/valve diameter ratio called fascicle density in this study; schematic diagram showing biostratigraphic ranges and phylogenic hypothesis for Stephanodiscus cf. vestibulis, S. umbilicatus, S. praesuzukii and S. suzukii in Lake Biwa with reference to S. vestibulis. (Saito-Kato et al. 2015)
Green algae
algae
Fig. (a-e) Calcareous green algae. (a) Oligoporella, (b) Petrascula, (c) Eugonophyllum, (d) Halimeda, (e) Boueina. l.s. and t.s. = longitudinal and transverse sections. (f-n) Green algae. (f) Tasmanites, (g) Calcisphaera, left = non-radiosphaerid, right = radiosphaerid, (h) Eovolvox, left, as preserved in CaCO3, right, reconstruction with inner daughter colony, (i) Botryococcus, left = colony, right = sections through tallus, (j) Recent Closterium (above), with zygospore, (below), (k) fossil Closterium-like desmid (scale unknown), (l) endolithic chaetophoralean-like alga, (m) Pediastrum, (n) recent Cosmarium with zygospore to right.
algae
Fig. a-c: Charophytes. a: Chara plant, b: Detail of stem, branches, oogonia and antheridia, c: Stellatochara progonite (bar = 100 μm). d-g: Calcareous red algae. d: Solenopora, e: Lithothamnion, f: Corallina, d: Epiphyton.
Phaeophyceae (褐藻): appeared after Trias
Rhodophyceae (紅藻): flourished in Ordovician
Alteration of generation
All vascular plants: haploid generation = gametophyte, diploid generation = sporophyte
- life cycle = biphassic system
Life cycle of Ulva: G = Sp. → primitive
Most plant species: G << Sp

ultrastructure: antrophic, heterotrophic
Gametophyte = n → reduced division (≠ meiosis) → Gamete (antheridium = sperm, oogonium = egg)

Angiosperm: antrophic gametophytes, which have no chloroplasts, do not exist

☛ Epoch: Paleozoic

Paleozoic (古生代)


Devonian (デボン紀, 4.16-3.67 Bya)

Carboniferous (石炭紀, 367-289 Mya)

Equisetidae, Equisetopsida (s.s.) or Sphenopsida トクサ類
Ginkgo
G. biloba: Permian (270 mya) - present (living fossil)

by Jurassic: worldwide
by Cenozoic: extinct except from China

Fossil species: G. adiantoides, G. apodes, G. cranei, G. digitata, G. dissecta, G. gardneri, G. ginkgoidea, G. henanensis, G. huolinhensis, G. huttonii, G. yimaensis

Permian (二畳紀, 290-251 Mya)

(Wegener 1912)

Diversity of plant distribution (植物分布の多様性)


Rhynie flora (ライニーフローラ)

early Devonian
Rhynia major, R. gwynne-vaughani, Horneophyton lignieri, Asteroxylon mackiei, etc.
Rhynie
Fig. A reconstructed example of landscape in the Devonian Rhynie chert

Euramerican flora (ユーラメリカフローラ)

≈ 3 Bya (late Paleozoic): present Europe and North America
Lepidophytina: Lepidodendron (鱗木),Sigillaria (封印木)
Articulatae: Calamites (蘆木)
Fern-like foliage:

Neuropteris, Alethopteris, Taeniopteris, Callipteris, Gigantopteris

Conifer: Cordaites

Angara or Siberia flora (アンガラフローラ)

Cathaysia flora (カタイシアフローラ)

Gigantopteris: characteristic distribution after the Permian

Gondwana flora (ゴンドワナフローラ)

recorded from glaciers developed in the upper Permian

Glossopteris: leaf = main vein (costa), lateral vein – dichotomous branching
Gangamopteris: leaf = no main vein, cold resistance
Gondwana
Fig. 1, 3: Glossopteris, 1: branch developing leaves. 3: leaf. 2, 4: Gangamopteris, 2: branch developing leaves. 4: leaf

Seed fern
Plant
Alethopteris Sternberg
Pennsylvanian, Minto Formation
Rothwell, New Brunswick
Collector: WB Evans
Seed fern
Plant
Alethopteris Sternberg
Pennsylvanian, St. Clair,
Pennsylvania
United States of America
Collector: WH Forbes
Leaves of Calamites
Plant
Annularia Sternberg
Pennsylvanian, Clifton Formation
Clifton, New Brunswick
Collectors: RF Miller and
J McGovern, 1994
Giant horsetail plant
Plant
Calamites Suckow
Pennsylvanian, Tynemouth
Creek Formation
Gardner Creek, New Brunswick
Collector: F Sherwood, 1989
Plant
Plant
Psilophyton charientos Gensel
Devonian, Campbellton Formation
Dalhousie Junction, New Brunswick
Collector: PG Gensel, ca 1986
Plant
Plant
Lepidodendropsis Sternberg
Mississippian, Albert Formation
Bloomfield, New Brunswick
Collector: RF Miller
(St John Museum, Sept 19 2014)

Permian and Carboniferous plants (二畳紀石炭紀)


The floras chronologically differed between the Northern and Southern Hemisphere.

The geological distribution of Carboniferous and Permian plants.

DevonianCarbonPermianTriassic
LowerUpperLowUpper
WestphalianStephanian
Spehnopsida
Asterocalamites===§=======
Calamites===========§======================
Asterophyllites=======================
Annularia=======================
Lobatannularia

=====

=======----------------------->
Schizoneura

=====

=================
Phylletheca

====

=======================================>
Euisetites=======================================>
Sphenophyllum========================================>
Cheirostrobus=======
Lycopsida
Lepidodendron

=====

===========§===================
Lepidopholois

=====

====§====
Sigillaria

====

====§==============
Stigamaria

=====

================================--
Archaeosigillaria

=====

=======
Bothrodendron

=====

====§====
Aselanus========------
Lepidocarpon===============
Miadesmia========
Lycopodites==============================================>
Selaginellites

=====

===============================>
Pteropsida
Coenopterideae
Botryopteris==============================
Metaclepsydropsis========================
Stauropteris=======
Diplolabis===============
Botrychioxylon=======
Etapteris========
Clepsydropsis==============================
Ankyropteris=======
Asterochlaena=======================
Other ferns
Thamnopteris

=====

=======
Psaronius===================§===
Rhacopteris (Anisopteris)===§===
Oligocarpia====§===================
Spermatophyta
Pteridospemales
Pecopteris============§=========================
Cladophlebis===============================>
Alethopteris====§===================
Lonchopteris====§============----------------------------------
Callipteris==============
Odontopteris

====

===========§===
Callipteridium===========§===
Neuropteris

====

====§====
Neuropteridium=====================
Gondowanidium

====

=======
Linopteris====§===================
Adiantites==========§===========--------------------------------------------------->
Sphenopteris=====================================================>
Mariopteris====§======
Sphenopteridium

=====

=======
Rhodea

=====

===§===========
Cardiopteris=======
Gigantopteris

=====

=======
Taeniopteris

======

===§===
Thinnfeldia=======================>
Gangamopteris

=====

=======
Glossopteris

=====

=====================
Chiropteris=======================>
Stems, etc.
Lyginopteris===============
Heterangium=======================
Rhetinangium=======
Megaloxylon========
Calamopitys=======
Stenomyelon=======
Protopitys=======
Cladoxylon

===

=======
Medullosa=======================
Cycadales & Bennettitales
Dioonites=======================>
Pterophyllum

====

===============================>
Sphenozamites=======================>
Ginkgoales
Baiera

====

=======================>
Sanortaea

====

=======
Cordaitales
Cordaites==============================-------------------------->
Pitys: Archaeopitys=======
Coenoxylon

===

=====
Dolerophyllum=======================
Coniferales
Araucarites===§===================
Walchia

====

===============
Ernestia=======
Voltia

===

==============
Pityanthus========
Pityospermum==============
Dicranophyllum

===

===================§==========
Ullmannia

===

=======
Gemphostrobus==========
Plants of uncertan position
Psygmophyllum

===

=================================
Plagiozamites===============
Tingia

====

=======
Pelourdea

====

=====================

Cordaites
Cordaites

Cordaites trees are an extinct group of seed-bearing conifer-like plants. Although an important part of the Pennsylvanian landscape, they only made up ten percent of the forest biomass. Cordaites trees, up to 30 meters tall, grew on the lowlands, while shrub varieties and shorter trees with stilt-like roots lived in swamps along the edges of seashores and estuaries.
Like many fossil plants, different parts of the tree may are known by different names. The former genus “Dadoxylon” refers to fossilized wood and includes logs that likely belonged to cordaites trees. The strap-like leaves, known as Cordaites, vary in size from a few centimeters to one meter in length. The unfertilized seeds, Cardiocarpus, were borne on the leafy branches of the tree and are often found in large numbers.

(St John Museum, Sept 19 2014)

Etapteris
Etapteris lacattei

Origin of terrestrial plants (陸上植物の起源)


Macro-fossil (巨大化石)

Taxonomical key
tracheid (仮導管)
cuticle (角皮) + stoma (気孔)
spore formation (胞子形状)
branching pattern (軸分枝系)
sexual tissues (繁殖組織): Gymnospermae Ex. cone = pine

Taxonomical classification

Division Rhyniophyta (ライニア門)

= Division Pteridophyta, s.l.
Found in the Early Devonian (≈ 419-393 mya)

Subdivision Psilophytina (裸茎植物亜門)

Class Rhyniopsida (ライニア綱)
= Class Psilophytopsida (古生マツバラン綱)
1970 Banks: three major groups =

Rhyniales +
Trimerophytales (Trimerophytina) +
Zosterophyllales (Zosterophyllophtina)

Order Rhyniales (ライニア目)
stele = centrarch 心原型 (≈ endarch 内原型)
lacking secondary vascular bundle tissues
sporangium - split vertically
Rhyniaceae (ライニア)
Rhynia Kidst. et Lang, Horneophyton Bargh. et Darrah (= Hornea Kidst. et Lang)
Rhynia
Rhynia: R. major (2n) → same species (?) → (n) R. gwyene-vaughan Cooksonia

Hypothesis: R. gwyene-vaughan: developing inconstant branch (不定枝) → R. major
unbalanced dichotomous branching → differentiation of stems and branches (dichotomous, polyaxial branching)
Selaginella tamariscina (P. Beauv.) Spring and Selaginella remotifolia Spring: planate, dichotomous branching - derivation from crisscross, dichotomous branching

Trimerophytaceae (Order Trimerophytales in opinion)
Dawasonites Halle
Trimerophyton Hopping (トリメロフィトン)

Trimerophyton
three branching → evolving to Equisetum

Cooksoniaceae (クックソニア) (opinion, merged into Rhyniaceae)
Cooksonia Lang
Asteroxylaceae (アステロキシロン)
Protolepidodendron Krejči (Gr. protos = first, lepidos = scale, dendron = tree)
Protolepidodendron
Fig. 1.Protoledpidoendron scharyanum (Mid-Devonian, Germany. Lower Devonian, Yungnagn, China)

a: branch attached with thread-like foliage, b: magnified branch surface. 2.Lepidodendron oculis-felis (Lower Permian). 3. Calamites cisti (Upper Permian, Germany). 4. Calamites, a: medullary groove (髄孔), b: xylem, c: medullary ray (射出髄). 5. Archaeopteris latifolia. 6. Archaeopteris hibernica. 7. Leaf based of several Lycopods: a, young twig of arborescent Lycopod; b, Lepidodendron; c, Lepidophloios; d, Bothrodendron

Calamophyton: mid-Devonian → morphologically similar with Hyenia = classified into Arthrophyta, homospore or heterospore is unknown
Sphenophyllum (Gr. sphenos = wedge, phyllum = leaf): tree fern (Articulatae, 有節類). strobilus = Bowmanites. homospore
Order Zosterophyllales (ゾステロフィルム目)
lateral sporangia (側生胞子嚢) → sporangium = transverse dehiscence

Zosterophyllales
H-shaped or K-shaped branching
exarch → Lepidophyta

[the present ferns]

Zosterophyllaceae
Bucheria Dorf, Zosterophyllum Daws.
Zosterophyllales
Fig. A: Horneophyton lignieri. B: Zosterophyllum rhenanum Kräusel u. Weyland. Upper Devonian (reconstruction) (Weyland 1935)

Zosterophyllum: aquatic plant (mesic sites), not developing leaves

DevonianUpper Devonian. Fig. Kaulangiophyton akantha. A. Restoration showing creeping axes with erect branches, two of them fertile. B. Restoration of part of fertile axis. (Gensel, Kasper & Andrews 1975).
[Division Rhyniophyta, described above]

Division Pteridophyta (シダ植物)

Subdivision Psilophytina (裸茎植物)

Class Psilophytopsida (古生マツバラン)
phylogenetic relations are unknown (taxonomical group of convenience)
Order Psilophytales (プシロフィトン/古生マツバラン)
Silurian - Permian
Psilophytaceae (プシロフィトン): Psilophyton Daws.
Fossil records from chert: Rhynia, Psilophyton, Taeniocrada, Cooksonia, Sporogonites

Body plan (structure, 体制): developed vasular bundles, not differantiated to stems and leavs

Subdivision Lepidophytina (小葉植物亜門)

= Microphyllophytina (小葉植物亜門), Lycopodiinae, Lycophytina, Lycopsida
Class Aglossposida (無舌綱)
Order Protolepidodendrales (古生ヒカゲノカズラ)
early Devonian - ending Devonian (partly until Carboniferous)

maostly herbs = secondary growth unproved

Drepanophycaceae: Baragwanathia, Drepanophycus
Protolepidodendraceae: Arachaeosigillaria Kidston, Lepidodendropsis Lutz, Protolepidodendron Krejči
Lycopodiaceae (2 species in existence): after Carboniferous

Fossil species: Lycopodites Brongn, Paurodendron Fry

Class Glossopsida (有舌綱)
Subclass Primofilicidae* (原シダ亜綱)
Order Protopteridales* (古生シダ): Devonian-Carboniferous Protoptericaceae* (古生シダ): Protopteridium, Svalbardia
Order Cladoxylales* (クラドキシロン): mid-Devonian-Carboniferous
only sporophyts reported, erect above-ground stem, dichotomous or irregular branching, crown developed on the top

Fern-like foliage (羊歯的葉)

Taxonomical and phylogenetical positions are not clearly determined
fern-like
Fig. Lower Carboniferous pteridosperm fronds (石炭紀下部シダ状種子植物). A, Sphenopteridium capillare, complete frond. B, Adiantites machanekii, fragment of frond showing form of ultimate segments. C, Sphenopteris affinis, portion of frond. D, Rhodea smithii, ultimate pinna. E, Diplopteridium teilianum, reconstruction of complete frond with Telangium type of pollen-bearing organs attached. F, pinna of Sphenopteris type, from Diplopteridium teilianum.
fern-like
Fig. Upper Carboniferous peridosperm fronds. A, Mariopteris, pinna showing double dichotomy. B, Mariopteris pinnule. C, Sphenopteris pinnule. D, Pecopteris (Asterotheca) daubrei, pinnule. E, Pecopteris armasii, pinnule. F, Odontopteris, complete frond. G, Odontopteris pinnule. H, Alethopteris, apex of frond. I, Aletopteris pinnule. J, Lonchopteris pinnule. K, Neuropteris, apex of frond. L, Neuropteris pinnule. M, Linopteris pinnule.

The evolution of seed plants (種子植物の進化)


Heterospory (異型胞子)

origin of seed: gymnospermae vs angiospermae ⇒ monophyly or polyphyly?
Homosproy and heterospory
Fern → hydro-fern = heterospory
Embryo – leaves keeping spores

macrosporangium → [sporocyst] → megaspore
microspograngium → [sporocyst] → microspore

Monophyletic theory and polyphyletic theory (単系説と多系説)


Mesozoic (中生代)


Origin of angiosperms (被子植物起源)

Cretaceous age: angiosperms appeared suddenly
1879 Darwin: abominable mystery (in a letter to Hooker J)
1927 Knowlton, Frank Hall (1860-1926): In Plants of the past

from the time of their appearance they did not progress at all due to their full-fledged appearance

1969 Bailey & Takhtajan: missing link as the polyphyletic origin
1970 Axelrod: origin was in mild uplants at low latitudes

1970 Smith: origin = southeast Asia near to Malaysia

2003 APG II: supported monophyletic origin

(*: fossil record = extinct)

Seed plants in mesozoic

Division Spermatophyta 種子植物門

Subdivision Gymnospermae 裸子植物亜門

Class Cycadopsida ソテツ綱
Subclass Pteridospermidae* シダ状種子植物亜綱
Devonian - Jurassic (fossil record)
integument (珠皮) formed by telome
  1. formed by symphysis (癒合)
  2. synangium (合生胞子嚢)
Order Pteridospermales シダ状裸子植物目
= Cycadofilicales ソテツシダ目 (seed ferns): sometimes not established

Pteridospermae
Fig. Pteridospermae. A-D: Lyginopteris oldhami (reconstructed by piecing leaves based on the characteristics leaf surface). A: Sphenopteris hoeninghausi (stem) + B + C (ovule): Lagenostoma + D, E: Aulacothea microsporophyll (小胞子葉). F: Whittleseya elegans microsporophyll (or pollen sac). G: Lagenostoma sinchlairi microphyll attached with seeds. H: cross-section of Stephanospermum akenioides seed.
A: close to fern, B: close to seed plant, D: pollen?
→ can be regarded as seeds attached with fern leaves

Lyginopteridaceae*: Devonian - Carboniferous

considered to be the most primitive seed plant reported from fossils
Lyginopteris Potonié: lower Carboniferous (gymnosperms appeared at the latest)- upper Carboniferous (leaf = Sphenopteris)

Medullosaceae*: Carboniferous - Permian

Medullosa Cotta: upper Carboniferous - Permian
vascular bundle = polystele
Medullosa
Fig. Vascular systems of Medullosaceae

Cycadofilicales
Fig. Reconstructed lax-stemmed
Medullosa thompsoni from Iowa
(Andrews 1940). Leaves are
drawn as drooping to fit within
the frame; in the in-life position,
petioles were probably ≈ 60° from
horizontal (Pfefferkorn et al. 1984).
Plant is ≈ 4 m tall.

Calamopityaceae*: Devonian - Carboniferous

Calamopitys Unger: fissil of stem

Peltaspermaceae*: Permian - Triassic

Lepidopteris Schimp.: fossil of leaf
Peltaspermum Brongn.: fossil of female reproductive organ

Corystospermaceae: Triassic

Pterorachis Freng.; fossil of male reproductive organ

Caytoniaceae: Triassic -Cretaceous

Caytonia Thomas: fossil of female reproductive organ

Order Caytoniaceae = Corystospermaceae + Caytoniaceae (when established)
Glossopteridaceae: Carboniferous - Permian → distributed mainly in Gondwana land (Order Glossopteridales, when established)

Gangamopteris McCoy: leaf fossil
Glossopteris Brongn.: leaf fossil

Subclass Cycadidae ソテツ亜綱
Order Bennettitales*: Triassic- end of Mesozoic)

Cycas
Fig. Bennettitales. A: Williamsonia sewararana resonstruction. B: Williamsoniella coronata, sporophyll with micro- and macro-sporophyll. C-G: Cycadeoidea. C: C. marshiana reconstruction. D: C. gibsoniana

Willamsoniaceae*

Williamsonia Carr. (Bennetiocarpus: seed fossil, Bennettistemon: male inflorescence fossil)

Wielandiellaceae*

Wielandiella Nathorst (= Anomozamites Schimper)
Williamsoniella Thomas (= Nilssoniopteris Nathorst)

Cycadeoideaceae

Cycadeoidea Buckland

Order Cycadales ソテツ目
Nilssoniaceae*: Jurassic - Cretaceous
1933 Florin, Rudolf (1894-1965): upper Triassic in Sweden

named Bjuvia simplex - most primitive cycas

1961 Harris TM: reconstructed Nilssonia
1975 Asama & Sekido (関戸): established Nilssoniocladus

also established Nilssoniaceae
reproductive organ fossil: ♂ = Androstrobus / ♀ = Beania

Subclass Pentoxylidae ペントキシロン亜綱*
Order Pentoxylales*

silicified wood
Silicified wood (珪化木)

Class Coniferopsida (球果植物綱)
Order Cordaitales
Upper Devonian - Permian, many fossils collected from the Northern Hemisphere
tall tree branching at the upper part, slim stem, large and clear pith
leaf: spiral arrangement, spoon-like, macrophyllous, single leaf ≈ 1 m long
Two plausible evolutionary pathways (similar with Araucariaceae
  1. Lebuchia (Walchia) → PrendonaliaUlmanniaAraucaria
  2. ErastiodendronStachyotaxusPodocarpus

[Epoch: Triassic 2.51-1.95 Bya]

Triassic plants (三畳紀)


Table. Geological distribution of some Triassic and Rhaetic plants


                           
Equisetales
Equisetites
Schizoneura:
    Neocalamites
Lycopodiales
Lycopodites
Lycostrobus:
    Lepidostrobus
Pleuromeia
Filicales
Marattiopsis
Danaeopsis
Todites
Cladophlebis
    nebbensis, etc.
Gleichenites
Hausmannia
Dictyophyllum
Clathropteris
Laccopteris:
    Andriania
Asterotheca
Neuropteridium
Pteridospermae
Glossopteris
Thinnfeldia and
    allied forms
Lepidopteris
Callipteridium
Cycadophyta
Wielandiella:
    Williamsonia
Pterophyllum
Nilssonia
Sphenozamites
Pseudoctenis:
    Ctenis
Otozamites
Ginkgoales
Ginkgoites
Baiera
Czekanowskia
Rhipidopsis
Coniferales
Araucarites
Voltzia
Stachyotaxus
Palissya
Podozamites
Incertae sedis
Rhexoxylon
Chiropteris
Pelourdea
Caytoniales
Sagenopteris     

Paleozoic
            

======

======

======

======






      ===


      ===



======


======

      ===

======



======

======





======
======
======

======
======





======
======

            

Trias-
Bunt    

======

======

======

======
======





======


======



======
======

======

======

======



======

======


======


======
======
======

======
======




======
======
======

            

-Rhaetic
Keup    

======

======

======

----------


======
======
======

======
======

======
======

======
======
======

======

======
======
======



======
======
======

======
======

======
======
======
======

======
======




======
======
======

======


Rhaetic

======

======

======

======


======
======
======

======
======
======
======
======

======
======


======

======
======

======

======
======
======
======

======
======

======
======
======
======

======

======
======
======


======
======

======


Jurassic

======

======

======




======

======


======
======
======
======

======
======




======


======

======
======
======
======

======
======

======
======



======



======



======

======


            

=>



=>




======




=>
=>
















=>



=>

=>




=>



=>





=>        

Order Corystospermales Petriella 1981 (Umkomasiales)
Corystospermaceae (Umkomasiaceae)
endemic to the Southern Hemisphere, including Inida
Dicroidium (seed fern), leaves

Kykloxylon and Rhexoxylon, wood
Umkomasia, ovulate reproductive structures
Pteruchus, pollen-producing organs
Falcisporites, pollen

Zirabia, ovulate structures
Order Peltaspermales Taylor 1981
mostly in Jurassic
Lepidopteris Schimper 1869, leaves

Dipteridaceae flora (ヤブレガサウラボシ植物群)

middle and late Triassic - early Jurassic
Distribution of Dipteridaceae: central Europe - North America
Class Pinopsida (球果), most of them are form genera
Incertae sedis (form genus by leaves) - because of no cones
Brachyphyllum: like modern Podocarpaceae and Cryptomeria
Pagiophyllum: like modern Araucaria bidwillii
Cupressinoxylon: like modern Cryptomeria or Podocarpaceae
Ginkgoitaceae: like modern Araucaria bidwillii or Cryptomeria
Elatocladus: like modern Cephalotaxus harringtonia or Metasequoia glyptostroboides
Cuppressinocladus: like modern Cupressaceae
Pityocladus: like modern Pinaceae (only leaf trace = Pityophyllum)
Podozamites: like modern Nageia nagi, Agathis
Japan
discovered the fossils of Dipteridaceae flora
Class Equisetineae (トクサ)
Lobatannularia 30 m h. Neocalamites 2 m h (extinct in mid-Jurassic)
Class Filicineae (シダ)
Subclass Osmundidae
Todites
Subclass Leptosporangiatae (薄嚢シダ)
Dipteridaceae
Incertae sedis: Cladophlebis (form genus)
Class Pteridospermopsida (シダ種子)
Sagenopteris
Class Cycadopsida (ソテツ) ☛ modern cycad
Order Bennettitales: Otozamites, Pterophyllum
Order Cycadales: Ctenis, Nilssonia
Class Ginkgoopsida (イチョウ): Baiera, Ginkgoites, Czekanowskia
Class Pinopsida: Podozamites, Incertae sedis (form genus)
Class Incertae sedis
Taeniopteris, taxonomical posiitons fiexed for a few specimens, not only from Japan

Class Eusporangiopsida: Marattiopsis (Marattiaceae)
Class Cycadopsida
Order Bennettitales: Nilssoniopteris leaf (= Williamsoniella reproductive organ)
Order Cycadales: Labdotenia, Doratophyllum - cycad-like stoma
Order Pentoxylales: Nipaniophyllum

[Epoch: Jurassic 1.95-1.35 Bya]

Jurassic (ジュラ紀)


Table. Geological distribution of Jurassic plants *: and allied species


                                              
Equisetales
Equisetes columnalis*
Neocalamites
Filicales
Marattiopsis
Todites
Osmundites
Cladophlebis denticulata*
Cladophlebis browniana
Gleichenites
Dictyophyllum laccopteris
Matonidium
Hausmania
Rhffordia
Klukia
Eboracia
Lacopteris, Nathorstia
Tempskya
Sphenopteris (Onichiopsis)
Coniopteris hymenophylloides*
Pteridospermae
Thinnfeldia*
Weichselia
Cycadophyta
Cycadeoidea
Williamsonia
Wielandiella
Ptieophyllum
Otozamites
Ctenis
Pseudoctenis
Dictyozamites
Nilssonia
Ptilophyllum
Zamites
Zamiophyllum, Pseudocycas
Ginkgoales
Ginkgoites
Baiera
Czekanowskia
Phoenicopsis
Eretmophyllum
Dammarites
Sequoites
Mariconia
Widdringtonites
Athritaxites
Pinites
Podozamites
Coniferales
Araucarites (Araucariphyllum)
Pagiophyllum
Brachyphyllum
Pinites, etc.
Podozamites
Caytoniales
Sagenopteris                         

Triassic
            


======

======
======

======

======
======











======


======
======

======
======


======




======
======
======



======


      ===



======
======
======
======
      ===

      ===

Jurassic
            

======
======

======
======
-----------
== § ==

======
======
======
======
======
======
      ===



======

======
======

======
== § ==
======
======
======
======
== § ==
======
======
======
======


======
======
======
======
======

======


======
======
== § ==

======
======
== § ==
== § ==
== § ==

======

Cretaceous
Lower Upper




===== ?

===== =====
===== ?
=====
==§== =====
===== ?
=====
=====
==§==
===== ?
==§==
===== =====
            =====
            =====





==§== ---------
=====


=====

=====

===== =====
=====
=====
===== =====

===== =====
=====



===== =====
===== =====
            =====
       == =====
==
===== =====
===== =====

===== =====
===== ?
===== ?
===== ?
==

==                 

Tertiary
            






======


======






















----------




======









======


----------





            

Seed plants in Mesozoic (中生代種子植物)

Pollen (花粉)
pollen
Fig. Time distribution and presumed relationships of principal early Cretaceous and Cenomanian angiosperm pollen types (e-p), and selected pre-Cretaceous pollen types (a-d). a: Eucommiidites, b: Triassic reticulate-columellar monosulcate of Cornet, c: cycad-type alveolar monosulcate, d: saccate alveolar pollen of Caytoniaceae and Corystospermaceae, e: Clavatipollenites, f: Retimonocolpites, g: Stellatopollis, h: Liliacidites, a possible monocot, I: reticulate tricoplate, j: striate tricoplate, k: smooth tricoplate, l: grain with tricolporate tendency, m: tricolpodiorate, n: polyporate, o: smooth, oblate-triangular tricolporate, p: early member of triporate Normapolles complex.
Leaf
Vein (葉脈): veinlet is present - developmental order of veins
pollen
Fig. Principal early Cretaceous and Cenomanian angiosperm leaf types. a: small, pinnately veined leaf of Vakhrameev, b: reniform, c: serrate, d: oblanceolate, e: Ficophyllum, f: Acaciaephyllum, g: lobate reniform, h: peltate, actinodromous, i: ovate cordate, j: pinnatifid Sapinodopsis, k: early plantanoid, l: compound Sapindopsis, m: later plantanoid, with rigidly organized fine venation, n: Liriophyllum, o: dichotomously compound, p: secondarily simple platanoid derivative.

[Epoch: Cretaceous 1.4-0.65 Bya]

Cretaceous (白亜紀)


Table. Pre-Aptian (≈ early Cretaceous) angiosperm fossil record → first angyosperms
Age: Megafossil claims (wood, leaf, etc.) ↔ Pollen claims
Barremian: OnoanaClavatipollenites
Hauterivian:
Valanginian: Carpolithus
Barriasian: Tyrma fruits ↔ Tricolpollemites
'Tithonian': ProblematospermumPterocarya, Trifossapollenites
Kimmeridgian: Palmoxylon, UngeriaSporojuglandoidites
Oxfordian: Sahnioxylon, Montsechia
Callovian:
Bathonian: Phyllites, SogdianiaMagnolia-type, Nelumbium-type
Bajocian: Suevioxylon, Caytonia'Clavatipollenites'

Early Jurassic: Propalmophyllum, Gramiane, Sassendorfites, FraxinopsisEuycommiidites, 'Clavatipollenites'

Late Triassic: Furcula, Sanmiguelia ↔ Eucommiidites
Early Carboniferous: ↔ Tetraporina, Triporina

Animal (動物)


Fish (魚類)

[*: extinct]

Coelacanth (シーラカンス)
Coelacanthidae*: Axelia, Ticinepomis, Coelacanthus, Wimania
Diplocercidae*: Diplocercides
Hadronectoridae*: Allenypterus, Hadronector, Polyosteorhynchus
Mawsoniidae*: Alcoveria, Axelrodichthys, Chinlea, Diplurus, Mawsonia
Miguashaiidae*: Miguashaia
Latimeriidae: Holophagus*, Libys*, Macropoma*, Macropomoides*, Megacoelacanthus*, Latimeria (present), Undina*
Laugiidae*: Coccoderma, Laugia
Rhabdodermatidae*: Caridosuctor, Rhabdoderma, Whiteiidae, Whiteia

Dinosaur (恐竜)

size Dinosauria Owen 1842: a type of reptile that became extinct about 65,000,000 years ago. There were many different types of dinosaur, some of which were extremely large. (general def.). 1: Brachiosaurus, body length = 25 m, height = 16 m. 2: Diplodocus, bl = 20-33 m, 3: Iguanodon, bl = 10 m, 4: Tyranosaurus, bl = 11-13 m, 5: Stegosaurus, 6: Triceratops, bl = 8-9 m, 7: Velociraptor, bl = 2 m, 8: Compsognathus, bl ≈ 1 m
Mammal

fossil
Eozostrodon

Eozostrodon (Morganucodontiade): Triassic
origin of living placental and marsupial mammals

15 cm l including tail, insectivorous (earthworm, etc.)
hook-like nail - scansorial

Elephant (ゾウ)
Elephantidae, elephants
horse
Fig. 83. Former and present distribution of Proboscideans: in the Late Tertiary natives of Africa, Eurasia, and North America; in the Pleistocene in South Africa as well. Disjunctive distribution of modern times (Africa: Loxodonta africana; South Asia: Elephas maximus). In the Late Tertiary and Quaternary spreading over the Arabian peninsula, Berign and Panama bridges.
Primates (霊長類)
1837 Lartet, Édouard: Pliopithecus antiquus in Europe and Asia

17-7 Mya, origin of gibbon
Epipliopithecus, Plesiopithecus and Limnopithecus

1856 Lartet, Édouard: Dryopithecus in middle-late Miocene

12.5-11.1 Mya in French Pyrenees
Proconsul is classified into Dryopithecus later

1872 Gervais, Paul: named Oreopithecus, extinct genus

1862 Prof. Cocchi, Igino: fossils in a lignite mine at Montebamboli, Italy

O. bambolii

1906 Osborn: identified an extinct primates, Apidium phiomense

theeth in early Oligocene (30-28 Mya) in the Fayoum deposits of Egypt
1962 Simons: A. moustafai, more fossils discovered after this

1910 Schlosser: Parapithecus fraasi, early Oligocene - basal anthropoids
1911 Schlosser: identified Propliopithecus haeckeli

1963-64 many fossils by the intensive investigation of Yale Univ
1967 Simons: phylogenetically closer to Hominidae than to Pongidae

1933 Hopwood, Arthur: named Proconsul in 21-14 Mya in Eastern Africa

1909 A gold prospector discovered the fossil
1963 Davis & Napier: habitat = forests to grasslands
Species: P. africanus, P. gitongai, P. major and P. meswae

1937 Colbert: identified Amphipithecus mogaungensis in late Eocene

neither adapiform nor omomyid primates
fossils in this genus discovered in Myanmar

1937 Colbert. 1965 Simons

Pondaungia cotteri

1962 Simons: a primate, Oligopithecus savagei

- discovered in early Oligocene in Africa
lower jaw bone (dental formula = (2123)
1995 Gheerbrant et al.: O. rogeri

1966 Simons: identified Aegyptopithecus zeuxis in Catarrhini

in Jebel Qatrani Formation, Egypt in 33.3-35.4 Mya

Paleocene in Tertiary (第三紀) or earlier
70 Mya: a primate-like animal, Purgatorius ceratops in Montana

consisting of a single tooth found in late-Cretaceous rocks (controversial)

56 Mya: a mouse-sized Teilhardina brandti in Wyoming

fingers curled around a branch

[The origin of human deomonstrated by fossils ]
Gigantopithecus von Koenigswald 1935
2-0.3 Mya (early–middle Pleistocene)
1915 Pilgrim: described G. giganteus

moved to Indopithecus giganteus

1935 von Koenigswald: described G. blacki, Black Eye

characterized by the huge teeth (morphologically human-like)

1937 Weidenreich: G. blacki - an extinct orangutan
1945 Weidenreich: G. blacki grouped into Hominidae

⇒ Giant hypothesis (rejected now)

1956 Pei et al.: > 1000 fossils recovered from a cave in SE China

middle Pleistocene (0.75-0.5 Mya) overlapped with Homo erectus
Hypotheses of extinction
1957 Pei: resource (food) shortage
1969 Reshetov: competition to human

1963 Simpson/1965 Simons: Gigantopithecus

grouped into Dryopithecus or Pongidae

1969 Simons & Chopra: G. bilaspurensis in Bilaspur, north India

in the Pliocene of Tertiary (9-5 Mya)
later merged into G. giganteus

Cainozoic (新生代)


Reconstruction of paleoenvironment (古環境復元)


Migration region (habitat or biotype) and spread (移住と拡散)
Regional patterns are decided by the indicator species

paleobiogeographical province
boundary = barrier (ex. high mountain)

Diversity: evaluated by the reconstruction Ex. high diversity on and around the equator

acretion techtonics, land bridge (陸橋)

+ comparisons with the present biogeographical regions
Relationships to Geology (地質学との関連)
Biosparite: spar
Micrite: lime mud
Adaptation spar: trace fossil
Paleoequator (古赤道)
The position of the equator in the geologic past as defined for a specific geologic period and based on geologic evidence. When talking about plant distribution (by Maekawa), the specific period is between Cretaceous and Tertiary.

Palynology (花粉学)


c. 1836 description of pollens in peat and coal by German scientists

pollens discovered from brown coal

Göppert, Johann Heinrich 1800-1884, (paleo-)botanist in Germany

coal - consisting of plant cells, confirmed by microscopic observations
→ origin of coal = plants

Lagerheim, Nils Gustav 1860-1926: disciple of Göppert, Swedish botanist

1905: developed pollen profile by peat profiles in Sweden

established pollen analysis

1909 pollen diagrams of peat profile

von Post, Ernst Jakob Lennart 1884-1951, Swedish geologist

1906 Linnaeus Prize, by the age estimation method of peat
1916 "Forest tree pollen in south Swedish peat bog deposits", presented in 16th Convention of Scandinavian Naturalists in Kristiania (Oslo)
developed quantitative pollen analysis

Holst, Nils Olof 1846-1918

1909 "Postglaciala tidsbestämningar"
postglacial time determinations - by pollen composition from lower to upper layeres in peat

Ex. Netherlands - pollen analysis Booundary:

Pliocene: forests by temperate broad-leaved and needle-leaved trees

Pliocene - 2.6 Mya - Pleistocene (glacier period)
grasslands: increased grasses and sedges - climate cooling

Ex. Osaka Group stratigraphy - comparable with the Netherlands

0.8 Mya: cool-temperate forests / subalpine needle-leaved forests

Extinction event (大絶滅)


= great extinction, mass extinction, or biotic crisis

(Raup & Sepkoski 1982)

Big Five

1) Ordovician-Silurian extinction event
= End Ordovician (O-S)
70% of species, 57% of genera and 27% of families were extinct
2) Late Devonian extinction
70% of species, 50% of genera and 19% of families were extinct
3) Permian-Triassic extinction event
= End Permian, P/T extinction
90-96% of species, 83% of genera and 57% of families were extinct
4) Triassic-Jurassic extinction event
= End Triassic
48% of genera, 23% of families were extinct (55% of genera and 20% of families in marine)
5) Cretaceous-Paleogene extinction event
= End Cretaceous, K-T extinction, or K-Pg extinction
75% of species, 50% of genera and 17% of families were extinct

[ endangered species ]

6) And now
The present extinction rate is 1000 times faster than the past rate, estimated by fossil record
The future extinction rate is 10 times faster than the present rate
フッター